78 resultados para ensialic basin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Watershed services are the benefits people obtain from the flow of water through a watershed. While demand for such services is increasing in most parts of the world, supply is getting more insecure due to human impacts on ecosystems such as climate or land use change. Population and water management authorities therefore require information on the potential availability of watershed services in the future and the trade-offs involved. In this study, the Soil and Water Assessment Tool (SWAT) is used to model watershed service availability for future management and climate change scenarios in the East African Pangani Basin. In order to quantify actual “benefits”, SWAT2005 was slightly modified, calibrated and configured at the required spatial and temporal resolution so that simulated water resources and processes could be characterized based on their valuation by stakeholders and their accessibility. The calibrated model was then used to evaluate three management and three climate scenarios. The results show that by the year 2025, not primarily the physical availability of water, but access to water resources and efficiency of use represent the greatest challenges. Water to cover basic human needs is available at least 95% of time but must be made accessible to the population through investments in distribution infrastructure. Concerning the trade-off between agricultural use and hydropower production, there is virtually no potential for an increase in hydropower even if it is given priority. Agriculture will necessarily expand spatially as a result of population growth, and can even benefit from higher irrigation water availability per area unit, given improved irrigation efficiency and enforced regulation to ensure equitable distribution of available water. The decline in services from natural terrestrial ecosystems (e.g. charcoal, food), due to the expansion of agriculture, increases the vulnerability of residents who depend on such services mostly in times of drought. The expected impacts of climate change may contribute to an increase or decrease in watershed service availability, but are only marginal and much lower than management impacts up to the year 2025.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European Water Framework Directive (WFD) requires a status assessment of all water bodies. If that status is deteriorated, the WFD urges the identification of its potential causes in order to be able to suggest appropriate management measures. The instrument of investigative monitoring allows for such identification, provided that appropriate tools are available to link the observed effects to causative stressors, while unravelling confounding factors. In this chapter, the state of the art of status and causal pathway assessment is described for the major stressors responsible for the deterioration of European water bodies, i.e. toxicity, acidification, salinisation, eutrophication and oxygen depletion, parasites and pathogens, invasive alien species, hydromorphological degradation, changing water levels as well as sediments and suspended matter. For each stressor, an extensive description of the potential effects on the ecological status is given. Secondly, stressor-specific abiotic and biotic indicators are described that allow for a first indication of probable causes, based on the assessment of available monitoring data. Subsequently, more advanced tools for site-specific confirmation of stressors at hand are discussed. Finally, the local status assessments are put into the perspective of the risk for downstream stretches in order to be able to prioritise stressors and to be able to select appropriate measures for mitigation of the risks resulting from these stressors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of plausible causes for water body status deterioration will be much easier if it can build on available, reliable, extensive and comprehensive biogeochemical monitoring data (preferably aggregated in a database). A plausible identification of such causes is a prerequisite for well-informed decisions on which mitigation or remediation measures to take. In this chapter, first a rationale for an extended monitoring programme is provided; it is then compared to the one required by the Water Framework Directive (WFD). This proposal includes a list of relevant parameters that are needed for an integrated, a priori status assessment. Secondly, a few sophisticated statistical tools are described that subsequently allow for the estiation of the magnitude of impairment as well as the likely relative importance of different stressors in a multiple stressed environment. The advantages and restrictions of these rather complicated analytical methods are discussed. Finally, the use of Decision Support Systems (DSS) is advocated with regard to the specific WFD implementation requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use various data sets, including images from the High Resolution Imaging Science Experiment camera (HiRISE), to examine the ejecta of the generally fresh-looking Hale crater that occurs in the rugged mountain terrain of Nereidum Montes in the northern rim materials of the Argyre impact structure on Mars. Our investigation reveals that the distal parts of the Hale crater ejecta and other basin deposits behave like viscous flows, which we attribute to the secondary flow of ejecta mixed with water–ice-rich basin materials. Consistent with water-enrichment of the basin materials, our mapping further reveals occasionally deformed surfaces, including highly conspicuous features such as mounds and fractured plateaus that we interpret to be a result of periglacial modification, subsequent (including possibly present-day) to the transient localized melting and fluvial erosion caused by Hale-impact-generated heating. In particular, our morphometric analysis of a well-defined valley system west of Hale crater suggests that it may have been formed through hydrologic/glacial activity prior to the Hale impact, with additional modification resulting from the impact and subsequent geologic and hydrologic phenomena including glacial and periglacial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bodélé Depression (Chad) in the central Sahara/Sahel region of Northern Africa is the most important source of mineral dust to the atmosphere globally. The Bodélé Depression is purportedly the largest source of Saharan dust reaching the Amazon Basin by transatlantic transport. Here, we have undertaken a comprehensive study of surface sediments from the Bodélé Depression and dust deposits (Chad, Niger) in order to characterize geochemically and isotopically (Sr, Nd and Pb isotopes) this dust source, and evaluate its importance in present and past African dust records. We similarly analyzed sedimentary deposits from the Amazonian lowlands in order to assess postulated accumulation of African mineral dust in the Amazon Basin, as well as its possible impact in fertilizing the Amazon rainforest. Our results identify distinct sources of different ages and provenance in the Bodélé Depression versus the Amazon Basin, effectively ruling out an origin for the Amazonian deposits, such as the Belterra Clay Layer, by long-term deposition of Bodélé Depression material. Similarly, no evidence for contributions from other potential source areas is provided by existing isotope data (Sr, Nd) on Saharan dusts. Instead, the composition of these Amazonian deposits is entirely consistent with derivation from in-situ weathering and erosion of the Precambrian Amazonian craton, with little, if any, Andean contribution. In the Amazon Basin, the mass accumulation rate of eolian dust is only around one-third of the vertical erosion rate in shield areas, suggesting that Saharan dust is “consumed” by tropical weathering, contributing nutrients and stimulating plant growth, but never accumulates as such in the Amazon Basin. The chemical and isotope compositions found in the Bodélé Depression are varied at the local scale, and have contrasting signatures in the “silica-rich” dry lake-bed sediments and in the “calcium-rich” mixed diatomites and surrounding sand material. This unexpected finding implies that the Bodélé Depression material is not “pre-mixed” at the source to provide a homogeneous source of dust. Rather, different isotope signatures can be emitted depending on subtle vagaries of dust-producing events. Our characterization of the Bodélé Depression components indicate that the Bodélé “calcium-rich” component, identified here, is most likely released via eolian processes of sand grain saltation and abrasion and may be significant in the overall global budget of dusts carried out by the Harmattan low-level jet during the winter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The northern section of the Bohemian Cretaceous Basin has been the site of intensive U exploitation with harmful impacts on groundwater quality. The understanding of groundwater flow and age distribution is crucial for the prediction of the future dispersion and impact of the contamination. State of the art tracer methods (3H, 3He, 4He, 85Kr, 39Ar and 14C) were, therefore, used to obtain insights to ageing and mixing processes of groundwater along a north–south flow line in the centre of the two most important aquifers of Cenomanian and middle Turonian age. Dating of groundwater is particularly complex in this area as: (i) groundwater in the Cenomanian aquifer is locally affected by fluxes of geogenic and biogenic gases (e.g. CO2, CH4, He) and by fossil brines in basement rocks rich in Cl and SO4; (ii) a thick unsaturated zone overlays the Turonian aquifer; (iii) a periglacial climate and permafrost conditions prevailed during the Last Glacial Maximum (LGM), and iv) the wells are mostly screened over large depth intervals. Large disagreements in 85Kr and 3H/3He ages indicate that processes other than ageing have affected the tracer data in the Turonian aquifer. Mixing with older waters (>50 a) was confirmed by 39Ar activities. An inverse modelling approach, which included time lags for tracer transport throughout the unsaturated zone and degassing of 3He, was used to estimate the age of groundwater. Best fits between model and field results were obtained for mean residence times varying from modern up to a few hundred years. The presence of modern water in this aquifer is correlated with the occurrence of elevated pollution (e.g. nitrates). An increase of reactive geochemical indicators (e.g. Na) and radiogenic 4He, and a decrease in 14C along the flow direction confirmed groundwater ageing in the deeper confined Cenomanian aquifer. Radiocarbon ages varied from a few hundred years to more than 20 ka. Initial 14C activity for radiocarbon dating was calibrated by means of 39Ar measurements. The 14C age of a sample recharged during the LGM was further confirmed by depleted stable isotope signatures and near freezing point noble gas temperature. Radiogenic 4He accumulated in groundwater with concentrations increasing linearly with 14C ages. This enabled the use of 4He to validate the dating range of 14C and extend it to other parts of this aquifer. In the proximity of faults, 39Ar in excess of modern concentrations and 14C dead CO2 sources, elevated 3He/4He ratios and volcanic activity in Oligocene to Quaternary demonstrate the influence of gas of deeper origin and impeded the application of 4He, 39Ar and 14C for groundwater dating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical wetlands are estimated to represent about 50% of the natural wetland methane (CH4) emissions and explain a large fraction of the observed CH4 variability on timescales ranging from glacial–interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This publication documents a first step in the development of a process-based model of CH4 emissions from tropical floodplains for global applications. For this purpose, the LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was slightly modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially explicit hydrology model PCR-GLOBWB. We introduced new plant functional types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote-sensing data sets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX reproduces the average magnitude of observed net CH4 flux densities for the Amazon Basin. However, the model does not reproduce the variability between sites or between years within a site. Unfortunately, site information is too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. Sensitivity analyses gave insights into the main drivers of floodplain CH4 emission and their associated uncertainties. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr−1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin, modulated emissions by about 20%. Correcting the LPX-simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the full dynamics in CH4 emissions but we proposed solutions to this issue. The interannual variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is accounted for, but still remains lower than in most of the WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results helped identify and prioritize directions towards more accurate estimates of tropical CH4 emissions, and they stress the need for more research to constrain floodplain CH4 emissions and their temporal variability, even before including other fundamental mechanisms such as floating macrophytes or lateral water fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123 ± 18 m3 s–1) using indirect methods, but one-dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127 ± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233 ± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35-year return period) equivalent to the 50-year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The closed Tangra Yumco Basin underwent the strongest Quaternary lake-level changes so far recorded on the Tibetan Plateau. It was hitherto unknown what effect this had on local Holocene vegetation development. A 3.6-m sediment core from a recessional lake terrace at 4,700 m a.s.l., 160 m above the present lake level of Tangra Yumco, was studied to reconstruct Holocene flooding phases (sedimentology and ostracod analyses), vegetation dynamics and human influence (palynology, charcoal and coprophilous fungi analyses). Peat at the base of the profile proves lake level was below 4,700 m a.s.l. during the Pleistocene/Holocene transition. A deep-lake phase started after 11 cal ka BP, but the ostracod record indicates the level was not higher than similar to 4,720 m a.s.l. (180 m above present) and decreased gradually after the early Holocene maximum. Additional sediment ages from the basin suggest recession of Tangra Yumco from the coring site after 2.6 cal ka BP, with a shallow local lake persisting at the site until similar to 1 cal ka BP. The final peat formation indicates drier conditions thereafter. Persistence of Artemisia steppe during the Holocene lake high-stand resembles palynological records from west Tibet that indicate early Holocene aridity, in spite of high lake levels that may have resulted from meltwater input. Yet pollen assemblages indicate humidity closer to that of present potential forest areas near Lhasa, with 500-600 mm annual precipitation. Thus, the early mid-Holocene humidity was sufficient to sustain at least juniper forest, but Artemisia dominance persisted as a consequence of a combination of environmental disturbances such as (1) strong early Holocene climate fluctuations, (2) inundation of habitats suitable for forest, (3) extensive water surfaces that served as barriers to terrestrial diaspore transport from refuge areas, (4) strong erosion that denuded the non-flooded upper slopes and (5) increasing human influence since the late glacial.