34 resultados para early life-history
Resumo:
Existing evidence of plant phenological change to temperature increase demonstrates that the phenological responsiveness is greater at warmer locations and in early-season plant species. Explanations of these findings are scarce and not settled. Some studies suggest considering phenology as one functional trait within a plant's life history strategy. In this study, we adapt an existing phenological model to derive a generalized sensitivity in space (SpaceSens) model for calculating temperature sensitivity of spring plant phenophases across species and locations. The SpaceSens model have three parameters, including the temperature at the onset date of phenophases (Tp), base temperature threshold (Tb) and the length of period (L) used to calculate the mean temperature when performing regression analysis between phenology and temperature. A case study on first leaf date of 20 plant species from eastern China shows that the change of Tp and Tb among different species accounts for interspecific difference in temperature sensitivity. Moreover, lower Tp at lower latitude is the main reason why spring phenological responsiveness is greater there. These results suggest that spring phenophases of more responsive, early-season plants (especially in low latitude) will probably continue to diverge from the other late-season plants with temperatures warming in the future.
Resumo:
BACKGROUND Children born preterm or with a small size for gestational age are at increased risk for childhood asthma. OBJECTIVE We sought to assess the hypothesis that these associations are explained by reduced airway patency. METHODS We used individual participant data of 24,938 children from 24 birth cohorts to examine and meta-analyze the associations of gestational age, size for gestational age, and infant weight gain with childhood lung function and asthma (age range, 3.9-19.1 years). Second, we explored whether these lung function outcomes mediated the associations of early growth characteristics with childhood asthma. RESULTS Children born with a younger gestational age had a lower FEV1, FEV1/forced vital capacity (FVC) ratio, and forced expiratory volume after exhaling 75% of vital capacity (FEF75), whereas those born with a smaller size for gestational age at birth had a lower FEV1 but higher FEV1/FVC ratio (P < .05). Greater infant weight gain was associated with higher FEV1 but lower FEV1/FVC ratio and FEF75 in childhood (P < .05). All associations were present across the full range and independent of other early-life growth characteristics. Preterm birth, low birth weight, and greater infant weight gain were associated with an increased risk of childhood asthma (pooled odds ratio, 1.34 [95% CI, 1.15-1.57], 1.32 [95% CI, 1.07-1.62], and 1.27 [95% CI, 1.21-1.34], respectively). Mediation analyses suggested that FEV1, FEV1/FVC ratio, and FEF75 might explain 7% (95% CI, 2% to 10%) to 45% (95% CI, 15% to 81%) of the associations between early growth characteristics and asthma. CONCLUSIONS Younger gestational age, smaller size for gestational age, and greater infant weight gain were across the full ranges associated with childhood lung function. These associations explain the risk of childhood asthma to a substantial extent.
Resumo:
The geologic history of the multi-ringed Argyre impact basin and surroundings has been reconstructed on the basis of geologic mapping and relative-age dating of rock materials and structures. The impact formed a primary basin, rim materials, and a complex basement structural fabric including faults and valleys that are radial and concentric about the primary basin, as well as structurally-controlled local basins. Since its formation, the basin has been a regional catchment for volatiles and sedimentary materials as well as a dominant influence on the flow of surface ice, debris flows, and groundwater through and over its basement structures. The basin is interpreted to have been occupied by lakes, including a possible Mediterranean-sized sea that formed in the aftermath of the Argyre impact event The hypothesized lakes froze and diminished through time, though liquid water may have remained beneath the ice cover and sedimentation may have continued for some time. At its deepest, the main Argyre lake may have taken more than a hundred thousand years to freeze to the bottom even absent any heat source besides the Sun, but with impact-induced hydrothermal heat, geothermal heat flow due to long-lived radioactivities in early martian history, and concentration of solutes in sub-ice brine, liquid water may have persisted beneath thick ice for many millions of years. Existence of an ice-covered sea perhaps was long enough for life to originate and evolve with gradually colder and more hypersaline conditions. The Argyre rock materials, diverse in origin and emplacement mechanisms, have been modified by impact, magmatic, eolian, fluvial, lacustrine, glacial, periglacial, alluvial, colluvial, and tectonic processes. Post-impact adjustment of part of the impact-generated basement structural fabric such as concentric faults is apparent. Distinct basin-stratigraphic units are interpreted to be linked to large-scale geologic activity far from the basin, including growth of the Tharsis magmatic-tectonic complex and the growth into southern middle latitudes of south polar ice sheets. Along with the migration of surface and sub-surface volatiles towards the central part of the primaiy basin, the substantial difference in elevation with respect to the surrounding highlands and Tharsis and the Thaumasia highlands result in the trapping of atmospheric volatiles within the basin in the form of fog and regional or local precipitation, even today. In addition, the impact event caused long-term (millions of years) hydrothermal activity, as well as deep-seated basement structures that have tapped the internal heat of Mars, as conduits, for far greater time, possibly even today. This possibility is raised by the observation of putative open-system pingos and nearby gullies that occur in linear depressions with accompanying systems of faults and fractures. Long-term water and heat energy enrichment, complemented by the interaction of the nutrient-enriched primordial crustal and mantle materials favorable to life excavated to the surface and near-surface environs through the Argyre impact event, has not only resulted in distinct geomorphology, but also makes the Argyre basin a potential site of exceptional astrobiological significance. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND Respiratory tract infections and subsequent airway inflammation occur early in the life of infants with cystic fibrosis. However, detailed information about the microbial composition of the respiratory tract in infants with this disorder is scarce. We aimed to undertake longitudinal in-depth characterisation of the upper respiratory tract microbiota in infants with cystic fibrosis during the first year of life. METHODS We did this prospective cohort study at seven cystic fibrosis centres in Switzerland. Between Feb 1, 2011, and May 31, 2014, we enrolled 30 infants with a diagnosis of cystic fibrosis. Microbiota characterisation was done with 16S rRNA gene pyrosequencing and oligotyping of nasal swabs collected every 2 weeks from the infants with cystic fibrosis. We compared these data with data for an age-matched cohort of 47 healthy infants. We additionally investigated the effect of antibiotic treatment on the microbiota of infants with cystic fibrosis. Statistical methods included regression analyses with a multivariable multilevel linear model with random effects to correct for clustering on the individual level. FINDINGS We analysed 461 nasal swabs taken from the infants with cystic fibrosis; the cohort of healthy infants comprised 872 samples. The microbiota of infants with cystic fibrosis differed compositionally from that of healthy infants (p=0·001). This difference was also found in exclusively antibiotic-naive samples (p=0·001). The disordering was mainly, but not solely, due to an overall increase in the mean relative abundance of Staphylococcaceae in infants with cystic fibrosis compared with healthy infants (multivariable linear regression model stratified by age and adjusted for season; second month: coefficient 16·2 [95% CI 0·6-31·9]; p=0·04; third month: 17·9 [3·3-32·5]; p=0·02; fourth month: 21·1 [7·8-34·3]; p=0·002). Oligotyping analysis enabled differentiation between Staphylococcus aureus and coagulase-negative Staphylococci. Whereas the analysis showed a decrease in S aureus at and after antibiotic treatment, coagulase-negative Staphylococci increased. INTERPRETATION Our study describes compositional differences in the microbiota of infants with cystic fibrosis compared with healthy controls, and disordering of the microbiota on antibiotic administration. Besides S aureus, coagulase-negative Staphylococci also contributed to the disordering identified in these infants. These findings are clinically important in view of the crucial role that bacterial pathogens have in the disease progression of cystic fibrosis in early life. Our findings could be used to inform future studies of the effect of antibiotic treatment on the microbiota in infants with cystic fibrosis, and could assist in the prevention of early disease progression in infants with this disorder. FUNDING Swiss National Science Foundation, Fondation Botnar, the Swiss Society for Cystic Fibrosis, and the Swiss Lung Association Bern.