40 resultados para dystrophy
Resumo:
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, fatal within 1 to 5 years after onset of symptoms. About 3 out of 100’000 persons are diagnosed with ALS and there is still no cure available [1, 2]. 95% of all cases occur sporadically and the aetiology remains largely unknown [XXXX]. However, up to now 16 genes were identified to play a role in the development of familial ALS. One of these genes is FUS that encodes for the protein fused in sarcoma/translocated in liposarcoma (FUS/TLS). Mutations in this gene are responsible for some cases of sporadic as well as of inherited ALS [3]. FUS belongs to the family of heterogeneous nuclear ribonucleoproteins and is predicted to be involved in several cellular functions like transcription regulation [4], RNA splicing [5, 6], mRNA transport in neurons [7] and microRNA processing [8]. Aberrant accumulation of mutated FUS has been found in the cytoplasm of motor neurons from ALS patients [9]. The mislocalization of FUS is based on a mutation in the nuclear localization signal of FUS [10]. However, it is still unclear if the cytoplasmic localization of FUS leads to a toxic gain of cytoplasmic function and/or a loss of nuclear function that might be crucial in the course of ALS. The goal of this project is to characterize the impact of ALS-associated FUS mutations on in vitro differentiated motor neurons. To this end, we edit the genome of induced pluripotent stem cells (iPSC) using transcription activator-like effector nucleases (TALENs) [11,12] to create three isogenic cell lines, each carrying an ALS-associated FUS mutation (G156E, R244C and P525L). These iPSC’s will then be differentiated to motor neurons according to a recently establishe protocol (Ref Wichterle) and serve to study alterations in the transcriptome, proteome and metabolome upon the expression of ALS-associated FUS. With this approach, we hope to unravel the molecular mechanism leading to FUS-associated ALS and to provide new insight into the emerging connection between misregulation of RNA metabolism and neurodegeneration, a connection that is currently implied in a variety of additional neurological diseases, including spinocerebellar ataxia 2 (SCA-2), spinal muscular atrophy (SMA), fragile X syndrome, and myotonic dystrophy.
Resumo:
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, fatal within 1 to 5 years after onset of symptoms. About 3 out of 100’000 persons are diagnosed with ALS and there is still no cure available [1, 2]. 95% of all cases occur sporadically and the aetiology remains largely unknown [3]. However, up to now 16 genes were identified to play a role in the development of familial ALS. One of these genes is FUS that encodes for the protein fused in sarcoma (FUS). Mutations in this gene are responsible for some cases of sporadic as well as of inherited ALS [4]. FUS belongs to the family of heterogeneous nuclear ribonucleoproteins and is predicted to be involved in several cellular functions like transcription regulation, RNA splicing, mRNA transport in neurons and microRNA processing [5] Aberrant accumulation of mutated FUS has been found in the cytoplasm of motor neurons from ALS patients [6]. The mislocalization of FUS is based on a mutation in the nuclear localization signal of FUS [7]. However, it is still unclear if the cytoplasmic localization of FUS leads to a toxic gain of cytoplasmic function and/or a loss of nuclear function that might be crucial in the course of ALS. The goal of this project is to characterize the impact of ALS-associated FUS mutations on in vitro differentiated motor neurons. To this end, we edit the genome of induced pluripotent stem cells (iPSC) using transcription activator-like effector nucleases (TALENs) [8,9] to create three isogenic cell lines, each carrying an ALS-associated FUS mutation (G156E, R244C and P525L). These iPSC’s will then be differentiated to motor neurons according to a recently established protocol [10] and serve to study alterations in the transcriptome, proteome and metabolome upon the expression of ALS-associated FUS. With this approach, we hope to unravel the molecular mechanism leading to FUS-associated ALS and to provide new insight into the emerging connection between misregulation of RNA metabolism and neurodegeneration, a connection that is currently implied in a variety of additional neurological diseases, including spinocerebellar ataxia 2 (SCA-2), spinal muscular atrophy (SMA), fragile X syndrome, and myotonic dystrophy. [1] Cleveland, D.W. et al. (2001) Nat Rev Neurosci 2(11): 806-819 [2] Sathasivam, S. (2010) Singapore Med J 51(5): 367-372 [3] Schymick, J.C. et al. (2007) Hum Mol Genet Vol 16: 233-242 [4] Pratt, A.J. et al. (2012). Degener Neurol Neuromuscul Dis 2012(2): 1-14 [5] Lagier-Tourenne, C. Hum Mol Genet, 2010. 19(R1): p. R46-64 [6] Mochizuki, Y. et al. (2012) J Neurol Sci 323(1-2): 85-92 [7] Dormann, D. et al. (2010) EMBO J 29(16): 2841-2857 [8] Hockemeyer, D. et al. (2011) Nat Biotech 29(8): 731-734 [9] Joung, J.K. and J.D. Sander (2013) Nat Rev Mol Cell Biol 14(1): 49-55 [10]Amoroso, M.W. et al. (2013) J Neurosci 33(2): 574-586.
Resumo:
In aerobic eukaryotic cells, the high energy metabolite ATP is generated mainly within the mitochondria following the process of oxidative phosphorylation. The mitochondrial ATP is exported to the cytoplasm using a specialized transport protein, the ADP/ATP carrier, to provide energy to the cell. Any deficiency or dysfunction of this membrane protein leads to serious consequences on cell metabolism and can cause various diseases such as muscular dystrophy. Described as a decisive player in the programmed cell death, it was recently shown to play a role in cancer. The objective of this review is to summarize the current knowledge of the involvement of the ADP/ATP carrier, encoded by the SLC25A4, SLC25A5, SLC25A6 and SLC25A31 genes, in human diseases and of the efforts made at designing different model systems to study this carrier and the associated pathologies through biochemical, genetic, and structural approaches.
Resumo:
Most cases of Duchenne muscular dystrophy are caused by dystrophin gene mutations that disrupt the mRNA reading frame. Artificial exclusion (skipping) of a single exon would often restore the reading frame, giving rise to a shorter, but still functional dystrophin protein. Here, we analyzed the ability of antisense U7 small nuclear (sn)RNA derivatives to alter dystrophin pre-mRNA splicing. As a proof of principle, we first targeted the splice sites flanking exon 23 of dystrophin pre-mRNA in the wild-type muscle cell line C2C12 and showed precise exon 23 skipping. The same strategy was then successfully adapted to dystrophic immortalized mdx muscle cells where exon-23-skipped dystrophin mRNA rescued dystrophin protein synthesis. Moreover, we observed a stimulation of antisense U7 snRNA expression by the murine muscle creatine kinase enhancer. These results demonstrate that alteration of dystrophin pre-mRNA splicing could correct dystrophin gene mutations by expression of specific U7 snRNA constructs.
Resumo:
Antisense oligonucleotides (ASOs) have the potential of revolutionizing medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated with nanoparticles to enhance their stability and cellular uptake; however, one of the biggest challenges is the poor understanding of their uptake mechanism, which is needed for designing better ASOs with high activity and low toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (P-PMO), 2?Omethyl phosphorothioate (2?OMe) and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Deuchenne muscular dystrophy (DMD). We show that P-PMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. P-PMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations P-PMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in-vitro. In-vivo, the activity of P-PMO was significantly decreased in SCARA1 knock-out mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2?OMe as shown by competitive inhibition and co-localization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that P-PMO and tcDNA have higher binding profiles to the receptor compared to 2?OMe. These results demonstrate receptor-mediated uptake for a range of ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.
Resumo:
Aims Duchenne muscular dystrophy (DMD), a degenerative pathology of skeletal muscle, also induces cardiac failure and arrhythmias due to a mutation leading to the lack of the protein dystrophin. In cardiac cells, the subsarcolemmal localization of dystrophin is thought to protect the membrane from mechanical stress. The absence of dystrophin results in an elevated stress-induced Ca2+ influx due to the inadequate functioning of several proteins, such as stretch-activated channels (SACs). Our aim was to investigate whether transient receptor potential vanilloid channels type 2 (TRPV2) form subunits of the dysregulated SACs in cardiac dystrophy. Methods and results We defined the role of TRPV2 channels in the abnormal Ca2+ influx of cardiomyocytes isolated from dystrophic mdx mice, an established animal model for DMD. In dystrophic cells, western blotting showed that TRPV2 was two-fold overexpressed. While normally localized intracellularly, in myocytes from mdx mice TRPV2 channels were translocated to the sarcolemma and were prominent along the T-tubules, as indicated by immunocytochemistry. Membrane localization was confirmed by biotinylation assays. Furthermore, in mdx myocytes pharmacological modulators suggested an abnormal activity of TRPV2, which has a unique pharmacological profile among TRP channels. Confocal imaging showed that these compounds protected the cells from stress-induced abnormal Ca2+ signals. The involvement of TRPV2 in these signals was confirmed by specific pore-blocking antibodies and by small-interfering RNA ablation of TRPV2. Conclusion Together, these results establish the involvement of TRPV2 in a stretch-activated calcium influx pathway in dystrophic cardiomyopathy, contributing to the defective cellular Ca2+ handling in this disease.
Resumo:
Antisense oligonucleotides are medical agents for the treatment of genetic diseases that are designed to interact specifically with mRNA. This interaction either induces enzymatic degradation of the targeted RNA or modifies processing pathways, e.g. by inducing alternative splicing of the pre-mRNA. The latter mechanism applies to the treatment of Duchenne muscular dystrophy with a sugar-modified DNA analogue called tricyclo-DNA (tcDNA). In tcDNA the ribose sugar-moiety is extended to a three-membered ring system, which augments the binding affinity and the selectivity of the antisense oligonucleotide for its target. The advent of chemically modified nucleic acids for antisense therapy presents a challenge to diagnostic tools, which must be able to cope with a variety of structural analogues. Mass spectrometry meets this demand for non-enzyme based sequencing methods ideally, because the technique is largely unaffected by structural modifications of the analyte. Sequence coverage of a fully modified tcDNA 15mer can be obtained in a single tandem mass spectrometric experiment. Beyond sequencing experiments, tandem mass spectrometry was applied to elucidate the gas-phase structure and stability of tcDNA:DNA and tcDNA:RNA hybrid duplexes. Most remarkable is the formation of truncated duplexes upon collision-induced dissociation of these structures. Our data suggest that the cleavage site within the duplex is directed by the modified sugar-moiety. Moreover, the formation of truncated duplexes manifests the exceptional stability of the hybrid duplexes in the gas-phase. This stability arises from the modified sugar-moiety, which locks the tcDNA single strand into a conformation that is similar to RNA in A-form duplexes. The conformational particularity of tcDNA in the gas-phase was confirmed by ion mobility-mass spectrometry experiments on tcDNA, DNA, and RNA.
Resumo:
Tricyclo-DNA (tcDNA) is a sugar- and backbone-modified analogue of DNA that is currently tested as antisense oligonucleotide for the treatment of Duchenne muscular dystrophy. The name tricyclo-DNA is derived from the modified sugar-moiety: the deoxyribose is extended to a three-membered ring system. This modification is designed to limit the flexibility of the structure, thus giving rise to entropically stabilized hybrid duplexes formed between tcDNA and complementary DNA or RNA oligonucleotides. While the structural modifications increase the biostability of the therapeutic agent, they also render the oligonucleotide inaccessible to enzyme-based sequencing methods. Tandem mass spectrometry constitutes an alternative sequencing technique for partially and fully modified oligonucleotides. For reliable sequencing, the fragmentation mechanism of the structure in question must be understood. Therefore, the presented work evaluates the effect of the modified sugar-moiety on the gas-phase dissociation of single stranded tcDNA. Moreover, our experiments reflect the exceptional gas-phase stability of hybrid duplexes that is most noticeable in the formation of truncated duplex ions upon collision-induced dissociation. The stability of the duplex arises from the modified sugar-moiety, as the rigid structure of the tcDNA single strand minimizes the change of the entropy for the annealing. Moreover, the tc-modification gives rise to extended conformations of the nucleic acids in the gas-phase, which was studied by ion mobility spectrometry-mass spectrometry.
Resumo:
Antisense oligonucleotides deserve great attention as potential drug candidates for the treatment of genetic disorders. For example, muscle dystrophy can be treated successfully in mice by antisense-induced exon skipping in the pre-mRNA coding for the structural protein dystrophin in muscle cells. For this purpose a sugar- and backbone-modified DNA analogue was designed, in which a tricyclic ring system substitutes the deoxyribose. These chemical modifications stabilize the dimers formed with the targeted RNA relative to native nucleic acid duplexes and increase the biostability of the antisense oligonucleotide. While evading enzymatic degradation constitutes an essential property of antisense oligonucleotides for therapeutic application, it renders the oligonucleotide inaccessible to biochemical sequencing techniques and requires the development of alternative methods based on mass spectrometry. The set of sequences studied includes tcDNA oligonucleotides ranging from 10 to 15 nucleotides in length as well as their hybrid duplexes with DNA and RNA complements. All samples were analyzed on a LTQ Orbitrap XL instrument equipped with a nano-electrospray source. For tandem mass spectrometric experiments collision-induced dissociation was performed, using helium as collision gas. Mass spectrometric sequencing of tcDNA oligomers manifests the applicability of the technique to substrates beyond the scope of enzyme-based methods. Sequencing requires the formation of characteristic backbone fragments, which take the form of a-B- and w-ions in the product ion spectra of tcDNA. These types of product ions are typically associated with unmodified DNA, which suggests a DNA-like fragmentation mechanism in tcDNA. The loss of nucleobases constitutes the second prevalent dissociation pathway observed in tcDNA. Comparison of partially and fully modified oligonucleotides indicates a pronounced impact of the sugar-moiety on the base loss. As this event initiates cleavage of the backbone, the presented results provide new mechanistic insights into the fragmentation of DNA in the gas-phase. The influence of the sugar-moiety on the dissociation extends to tcDNA:DNA and tcDNA:RNA hybrid duplexes, where base loss was found to be much more prominent from sugar-modified oligonucleotides than from their natural complements. Further prominent dissociation channels are strand separation and backbone cleavage of the single strands, as well as the ejection of backbone fragments from the intact duplex. The latter pathway depends noticeably on the base sequence. Moreover, it gives evidence of the high stability of the hybrid dimers, and thus directly reflects the affinity of tcDNA for its target in the cell. As the cellular target of tcDNA is a pre-mRNA, the structure was designed to discriminate RNA from DNA complements, which could be demonstrated by mass spectrometric experiments.
Resumo:
Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.