138 resultados para donor acceptor pair


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein is an essential component for life, and its synthesis is mediated by codons in any organisms on earth. While some codons encode the same amino acid, their usage is often highly biased. There are many factors that can cause the bias, but a potential effect of mononucleotide repeats, which are known to be highly mutable, on codon usage and codon pair preference is largely unknown. In this study we performed a genomic survey on the relationship between mononucleotide repeats and codon pair bias in 53 bacteria, 68 archaea, and 13 eukaryotes. By distinguishing the codon pair bias from the codon usage bias, four general patterns were revealed: strong avoidance of five or six mononucleotide repeats in codon pairs; lower observed/expected (o/e) ratio for codon pairs with C or G repeats (C/G pairs) than that with A or T repeats (A/T pairs); a negative correlation between genomic GC contents and the o/e ratios, particularly for C/G pairs; and avoidance of C/G pairs in highly conserved genes. These results support natural selection against long mononucleotide repeats, which could induce frameshift mutations in coding sequences. The fact that these patterns are found in all kingdoms of life suggests that this is a general phenomenon in living organisms. Thus, long mononucleotide repeats may play an important role in base composition and genetic stability of a gene and gene functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in vivo autologous serum skin test (ASST) is the diagnostic gold standard to detect autoantibodies against FcεRI or IgE itself, as well as other autoreactive serum components, in patients with chronic spontaneous urticaria (CU). Coincubation of patient sera with donor basophils and measuring their degranulation in vitro could be a safe alternative but has shown inconsistent results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY: BACKGROUND: Recruitment of platelets (PLT) during donor PLT apheresis may facilitate the harvest of multiple units within a single donation. METHODS: We compared two PLT apheresis procedures (Amicus and Trima Accel) in a prospective, randomized, paired cross-over study in 60 donors. The 120 donations were compared for depletion of circulating PLT in the donors, PLT yields and PLT recruitment. A recruitment was defined as ratio of total PLT yield and donor PLT depletion > 1. RESULTS: Despite comparable differences of pre- and post-apheresis PLT counts (87 × 10(9)/l in Trima Accel vs. 92 × 10(9)/l in Amicus, p = 0.383), PLT yields were higher with Trima Accel (7.48 × 10(11) vs. 6.06 × 10(11), p < 0.001), corresponding to a higher PLT recruitment (1.90 vs. 1.42, p < 0.001). We observed a different increase of WBC counts after aphereses, which was more pronounced with Trima Accel than with Amicus (1.30 × 10(9)/l vs. 0.46 × 10(9)/l, p < 0.001). CONCLUSION: Both procedures induced PLT recruitment. This was higher in Trima Accel, contributing to a higher yield in spite of a comparable depletion of circulating PLT in the donors. This recruitment facilitates the harvest of multiple units within a single donation and seems to be influenced by the procedure utilized. The different increases of circulating donor white blood cells after donation need further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined spectroscopic and ab initio theoretical study of the doubly hydrogen-bonded complex of 2-pyridone (2PY) with NH3 has been performed. The S-1 <- S-0 spectrum extends up to approximate to 1200 cm(-1) above the 0(0)(0) band, close to twice the range observed for 2PY. The S-1 state nonradiative decay for vibrations above approximate to 300 cm(-1) in the NH3 complex is dramatically slowed down relative to bare 2PY. Also, the Delta v=2,4,... overtone bands of the v(1)' and v(2)' out-of-plane vibrations that dominate the low-energy spectral region of 2PY are much weaker or missing for 2PY center dot NH3, which implies that the bridging (2PY)NH center dot center dot center dot NH3 and H2NH center dot center dot center dot O=C H-bonds clamp the 2PY at a planar geometry in the S-1 state. The mass-resolved UV vibronic spectra of jet-cooled 2PY center dot NH3 and its H/D mixed isotopomers are measured using two-color resonant two-photon ionization spectroscopy. The S-0 and S-1 equilibrium structures and normal-mode frequencies are calculated by density functional (B3LYP) and correlated ab initio methods (MP2 and approximate second-order coupled-cluster, CC2). The S-1 <- S-0 vibronic assignments are based on configuration interaction singles (CIS) and CC2 calculations. A doubly H-bonded bridged structure of C-S symmetry is predicted, in agreement with that of Held and Pratt [J. Am. Chem. Soc. 1993, 115, 9718]. While the B3LYP and MP2 calculated rotational constants are in very good agreement with experiment, the calculated H2NH center dot center dot center dot O=C H-bond distance is approximate to 0.7 angstrom shorter than that derived by Held and Pratt. On the other hand, this underlines their observation that ammonia can act as a strong H-bond donor when built into an H-bonded bridge. The CC2 calculations predict the H2NH center dot center dot center dot O distance to increase by 0.2 angstrom upon S-1 <- S-0 electronic excitation, while the (2PY)NH center dot center dot center dot NH3 H-bond remains nearly unchanged. Thus, the expansion of the doubly H-bonded bridge in the excited state is asymmetric and almost wholly due to the weakening of the interaction of ammonia with the keto acceptor group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N-H center dot center dot center dot pi hydrogen bond is an important intermolecular interaction in many biological systems. We have investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet cooled complex of pyrrole with benzene and benzene-d(6) (Pyr center dot Bz, Pyr center dot Bz-d(6)). DFT-D density functional, SCS-MP2 and SCS-CC2 calculations predict a T-shaped and (almost) C(s) symmetric structure with an N-H center dot center dot center dot pi hydrogen bond to the benzene ring. The pyrrole is tipped by omega(S(0)) = +/- 13 degrees relative to the surface normal of Bz. The N center dot center dot center dot ring distance is 3.13 angstrom. In the S(1) excited state, SCS-CC2 calculations predict an increased tipping angle omega(S(1)) = +/- 21 degrees. The IR depletion spectra support the T-shaped geometry: The NH stretch is redshifted by -59 cm(-1), relative to the "free" NH stretch of pyrrole at 3531 cm(-1), indicating a moderately strong N-H center dot center dot center dot pi interaction. The interaction is weaker than in the (Pyr)(2) dimer, where the NH donor shift is -87 cm(-1) [Dauster et al., Phys. Chem. Chem. Phys., 2008, 10, 2827]. The IR C-H stretch frequencies and intensities of the Bz subunit are very similar to those of the acceptor in the (Bz)(2) dimer, confirming that Bz acts as the acceptor. While the S(1) <- S(0) electronic origin of Bz is forbidden and is not observable in the gas-phase, the UV spectrum of Pyr center dot Bz in the same region exhibits a weak 0(0)(0) band that is red-shifted by 58 cm(-1) relative to that of Bz (38 086 cm(-1)). The origin appears due to symmetry-breaking of the p-electron system of Bz by the asymmetric pyrrole NH center dot center dot center dot pi hydrogen bond. This contrasts with (Bz)(2), which does not exhibit a 0(0)(0) band. The Bz moiety in Pyr center dot Bz exhibits a 6a(0)(1) band at 0(0)(0) + 518 cm(-1) that is about 20x more intense than the origin band. The symmetry breaking by the NH center dot center dot center dot pi hydrogen bond splits the degeneracy of the v(6)(e(2g)) vibration, giving rise to 6a' and 6b' sub-bands that are spaced by similar to 6 cm(-1). Both the 0(0)(0) and 6(0)(1) bands of Pyr center dot Bz carry a progression in the low-frequency (10 cm(-1)) excited-state tipping vibration omega', in agreement with the change of the omega tipping angle predicted by SCS-MP2 and SCS-CC2 calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine center dot H2O. monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift delta nu of the S-1 <- S-0 transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (delta nu = 889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H2O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D-e = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)pi pi* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S-0 state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)pi pi* state to the lower-lying (1)n pi* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)pi pi* state of B is planar and decoupled from the (1)n pi* state. These observations agree with the calculations, which predict the (1)n pi* above the (1)pi pi* state for isomer B but below the (1)pi pi* for both 9H-2AP and isomer A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different synthetic routes have been used for the preparation of a new tetranuclear [Fe4O2(O2CCMe3)(8)(bpm)] cluster (1) and a one-dimensional coordination polymer [Fe4O2-(O2CCMe3)(8)(hmta)](n) (2) (bpm = 2,2'-bipyrimidine and hmta = hexamethylenetetramine). For cluster 1, two structural isomers, 1a and 1b center dot 3MeCN, have been found. X-ray crystallographic analysis showed that all complexes consist of a central {Fe-4(mu(3)-O)(2)}(8+) core. In 1a, metal ions in the core are additionally linked by six bridging pivalates as two other pivalates and a bpm ligand are chelated to Fe-III ions, whereas in cluster 1b, metal ions in the {Fe-4(mu(3)-O)(2)}(8+) core are linked by seven bridging pivalates and only one carboxylate as well as bpm are chelated to the iron centers. In coordination polymer 2, [Fe4O2(O2CCMe3)(8)] clusters are bridged by hmta ligands to form zigzag chains. Magnetic measurements have been carried out to characterize these complexes and revealed antiferromagnetic interactions between Fe-III ions with best-fit parameters of J(wb) = -72.2 (1a) and -88.7 cm(-1) (1b) for wing...body interactions.