32 resultados para dextran


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND SIRT2 belongs to a highly conserved family of NAD+-dependent deacylases, consisting of seven members (SIRT1-SIRT7), which vary in subcellular localizations and have substrates ranging from histones to transcription factors and enzymes. Recently SIRT2 was revealed to play an important role in inflammation, directly binding, deacetylating, and inhibiting the p65 subunit of NF-κB. METHODS A Sirt2 deficient mouse line (Sirt2-/-) was generated by deleting exons 5-7, encoding part of the SIRT2 deacetylase domain, by homologous recombination. Age- and sex-matched Sirt2-/- and Sirt2+/+ littermate mice were subjected to dextran sulfate sodium (DSS)-induced colitis and analyzed for colitis susceptibility. RESULTS Sirt2-/- mice displayed more severe clinical and histological manifestations after DSS colitis compared to wild type littermates. Notably, under basal condition, Sirt2 deficiency does not affect the basal phenotype and intestinal morphology Sirt2 deficiency, however, affects macrophage polarization, creating a pro-inflammatory milieu in the immune cells compartment. CONCLUSION These data confirm a protective role for SIRT2 against the development of inflammatory processes, pointing out a potential role for this sirtuin as a suppressor of colitis. In fact, SIRT2 deletion promotes inflammatory responses by increasing NF-κB acetylation and by reducing the M2-associated anti-inflammatory pathway. Finally, we speculate that the activation of SIRT2 may be a potential approach for the treatment of inflammatory bowel disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND & AIMS Senescence prevents cellular transformation. We investigated whether vascular endothelial growth factor (VEGF) signaling via its receptor, VEGFR2, regulates senescence and proliferation of tumor cells in mice with colitis-associated cancer (CAC). METHODS CAC was induced in VEGFR2(ΔIEC) mice, which do not express VEGFR2 in the intestinal epithelium, and VEGFR2(fl/fl) mice (controls) by administration of azoxymethane followed by dextran sodium sulfate. Tumor development and inflammation were determined by endoscopy. Colorectal tissues were collected for immunoblot, immunohistochemical, and quantitative polymerase chain reaction analyses. Findings from mouse tissues were confirmed in human HCT116 colorectal cancer cells. We analyzed colorectal tumor samples from patients before and after treatment with bevacizumab. RESULTS After colitis induction, VEGFR2(ΔIEC) mice developed significantly fewer tumors than control mice. A greater number of intestinal tumor cells from VEGFR2(ΔIEC) mice were in senescence than tumor cells from control mice. We found VEGFR2 to activate phosphatidylinositol-4,5-bisphosphate-3-kinase and AKT, resulting in inactivation of p21 in HCT116 cells. Inhibitors of VEGFR2 and AKT induced senescence in HCT116 cells. Tumor cell senescence promoted an anti-tumor immune response by CD8(+) T cells in mice. Patients whose tumor samples showed an increase in the proportion of senescent cells after treatment with bevacizumab had longer progression-free survival than patients in which the proportion of senescent tumor cells did not change before and after treatment. CONCLUSIONS Inhibition of VEGFR2 signaling leads to senescence of human and mouse colorectal cancer cells. VEGFR2 interacts with phosphatidylinositol-4,5-bisphosphate-3-kinase and AKT to inactivate p21. Colorectal tumor senescence and p21 level correlate with patient survival during treatment with bevacizumab.