44 resultados para crosslinking reagents
Resumo:
The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the central nervous system.1 It is difficult to characterize transmembrane dynamic receptors with classical structural biology approaches like crystallization and x-ray. The use of photoaffinity probes is an alternative approach to identify regions in the protein that are important for the binding of small molecules. Therefore we synthesized a small library of photoaffinity probes by conjugating photophores via various linkers to granisetron which is a known antagonist of the 5-HT3R. We were able to obtain several compounds with diverse linker lengths and different photolabile moieties that show nanomolar binding affinities for the orthosteric binding site. Furthermore we established a stable h5-HT3R expressing cell line and a purification protocol to yield the receptor in a high purity. Currently we are investigating the photo crosslinking of these ligands with the 5-HT3R.
Resumo:
The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the central nervous system.1 It is difficult to characterize transmembrane dynamic receptors with classical structural biology approaches like crystallization and x-ray. The use of photoaffinity probes is an alternative approach to identify regions in the protein that are important for the binding of small molecules. Therefore we synthesized a small library of photoaffinity probes by conjugating photophores via various linkers to granisetron which is a known antagonist of the 5-HT3R. We were able to obtain several compounds with diverse linker lengths and different photolabile moieties that show nanomolar binding affinities for the orthosteric binding site. Furthermore we established a stable h5-HT3R expressing cell line and a purification protocol to yield the receptor in a high purity. Currently we are investigating the photo crosslinking of these ligands with the 5-HT3R.
Resumo:
IL-1 and TNF are important proinflammatory cytokines implicated in both antimicrobial host defense and pathogenesis of diseases with an immune-mediated and/or inflammatory component. Respective studies in the dog have been hampered by the unavailability of reagents allowing the specific measurement of canine cytokine proteins and the effect of canine cytokine neutralization by Ab. Starting with recombinant canine (rcan) IL-1beta and rcanTNF, four polyclonal antisera and 22 mAb specific for rcanIL-1beta and rcanTNF were generated. Their usefulness in neutralization assays was determined. Using cytokine-containing supernatants of canine cells in bioassays, polyclonal antisera neutralized either canine IL-1beta or TNF. TNF was also neutralized by three antibodies developed in this study and one commercial mAb. The usefulness of monoclonal and polyclonal Ab in canine cytokine-specific Ab capture ELISA's was assessed. This resulted in the identification of a commercial mAb combination and one pair developed in this study allowing low levels of TNF to be detected by antibody capture ELISA. The detection limit was 141 pg/ml rcanTNF for both combinations. Using rcanIL-1beta as an antigen allowed the detection of lower concentrations of rcanIL-1beta (20 pg/ml, on the average) by a pair of polyclonal antisera than when monoclonals were used. By using such IL-1beta-specific and TNF-specific ELISA's, the respective cytokines were detected in supernatants of canine PBMC stimulated with LPS or heat-killed Listeria monocytogenes and interferon-gamma combined. Thus, monoclonal and polyclonal reagents were identified allowing the quantitation of canine IL-1beta and TNF production in vitro, and the neutralization of these cytokines.
Resumo:
With the aim of characterizing specific immunogenic proteins of Mycoplasma mycoides subsp. mycoides small colony (SC) type, the aetiological agent of contagious bovine pleuropneumonia, a gene encoding a major immunogenic protein of 72 kDa named P72 was cloned and expressed in Escherichia coli. The expressed protein was of the same apparent molecular mass as that produced by the parent strain. The predicted molecular mass of P72, based on the DNA-deduced amino acid sequence, was 61.118 kDa, significantly lower than the apparent molecular mass of endogenous or recombinant P72 on SDS-PAGE. Analysis of the amino acid sequence revealed a typical prokaryotic signal peptidase II-membrane lipoprotein lipid attachment site and a transmembrane structure domain in the leader sequence at the amino-terminal end of the protein. P72 was shown to be a lipoprotein and its surface location was confirmed by trypsin treatment of whole cells. An unassigned gene encoding a peptide with some similarity to P72 was found on the genome sequence of M. capricolum subsp. capricolum but not on that of Mycoplasma genitalium. The P72 gene was detected in 11/11 M. mycoides subsp. mycoides SC strains. Antiserum against recombinant P72 reacted strongly with 12/12 strains of M. mycoides subsp. mycoides SC, weakly with Mycoplasma bovine group 7 strain PG50, but not with other members of the 'mycoides cluster' or closely related mycoplasmas. Cows experimentally contact-infected with M. mycoides subsp. mycoides SC developed a humoral response against P72 within 35 d. P72 is a specific antigenic membrane lipoprotein of M. mycoides subsp. mycoides SC with potential for use in development of diagnostic reagents. It seems to belong to a family of lipoproteins of the "mycoides cluster'.
Resumo:
Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules (1). Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii (2). The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-bound non-protein-coding RNA (ncRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production (1). (1) Gebetsberger J. and Polacek N. (2013), RNA Biol. 10:1798-1808 (2) Gebetsberger J. et. al. (2012), Archaea, Article ID 260909
Resumo:
The nematode Caenorhabditis elegans is characterized by many features that make it highly attractive to study nuclear pore complexes (NPCs) and nucleocytoplasmic transport. NPC composition and structure are highly conserved in nematodes and being amenable to a variety of genetic manipulations, key aspects of nuclear envelope dynamics can be observed in great details during breakdown, reassembly, and interphase. In this chapter, we provide an overview of some of the most relevant modern techniques that allow researchers unfamiliar with C. elegans to embark on studies of nucleoporins in an intact organism through its development from zygote to aging adult. We focus on methods relevant to generate loss-of-function phenotypes and their analysis by advanced microscopy. Extensive references to available reagents, such as mutants, transgenic strains, and antibodies are equally useful to scientists with or without prior C. elegans or nucleoporin experience.
Resumo:
BACKGROUND Detection of HIV-1 p24 antigen permits early identification of primary HIV infection and timely intervention to limit further spread of the infection. Principally, HIV screening should equally detect all viral variants, but reagents for a standardised test evaluation are limited. Therefore, we aimed to create an inexhaustible panel of diverse HIV-1 p24 antigens. METHODS We generated a panel of 43 recombinantly expressed virus-like particles (VLPs), containing the structural Gag proteins of HIV-1 subtypes A-H and circulating recombinant forms (CRF) CRF01_AE, CRF02_AG, CRF12_BF, CRF20_BG and group O. Eleven 4th generation antigen/antibody tests and five antigen-only tests were evaluated for their ability to detect VLPs diluted in human plasma to p24 concentrations equivalent to 50, 10 and 2 IU/ml of the WHO p24 standard. Three tests were also evaluated for their ability to detect p24 after heat-denaturation for immune-complex disruption, a pre-requisite for ultrasensitive p24 detection. RESULTS Our VLP panel exhibited an average intra-clade p24 diversity of 6.7%. Among the 4th generation tests, the Abbott Architect and Siemens Enzygnost Integral 4 had the highest sensitivity of 97.7% and 93%, respectively. Alere Determine Combo and BioRad Access were least sensitive with 10.1% and 40.3%, respectively. Antigen-only tests were slightly more sensitive than combination tests. Almost all tests detected the WHO HIV-1 p24 standard at a concentration of 2 IU/ml, but their ability to detect this input for different subtypes varied greatly. Heat-treatment lowered overall detectability of HIV-1 p24 in two of the three tests, but only few VLPs had a more than 3-fold loss in p24 detection. CONCLUSIONS The HIV-1 Gag subtype panel has a broad diversity and proved useful for a standardised evaluation of the detection limit and breadth of subtype detection of p24 antigen-detecting tests. Several tests exhibited problems, particularly with non-B subtypes.
Resumo:
A bitopic ligand, 4-(3,5-dimethylpyrazol-4-yl)-1,2,4-triazole (Hpz-tr) (1), containing two different heterocyclic moieties was employed for the design of copper(II)–molybdate solids under hydrothermal conditions. In the multicomponent CuII/Hpz-tr/MoVI system, a diverse set of coordination hybrids, [Cu(Hpz-tr)2SO4]·3H2O (2), [Cu(Hpz-tr)Mo3O10] (3), [Cu4(OH)4(Hpz-tr)4Mo8O26]·6H2O (4), [Cu(Hpz-tr)2Mo4O13] (5), and [Mo2O6(Hpz-tr)]·H2O (6), was prepared and characterized. A systematic investigation of these systems in the form of a ternary crystallization diagram approach was utilized to show the influence of the molar ratios of starting reagents, the metal (CuII and MoVI) sources, the temperature, etc., on the reaction products outcome. Complexes 2–4 dominate throughout a wide crystallization range of the composition triangle, while the other two compounds 5 and 6 crystallize as minor phases in a narrow concentration range. In the crystal structures of 2–6, the organic ligand behaves as a short [N–N]-triazole linker between metal centers Cu···Cu in 2–4, Cu···Mo in 5, and Mo···Mo in 6, while the pyrazolyl function remains uncoordinated. This is the reason for the exceptional formation of low-dimensional coordination motifs: 1D for 2, 4, and 6 and 2D for 3 and 5. In all cases, the pyrazolyl group is involved in H bonding (H-donor/H-acceptor) and is responsible for π–π stacking, thus connecting the chain and layer structures in more complicated H-bonding architectures. These compounds possess moderate thermal stability up to 250–300 °C. The magnetic measurements were performed for 2–4, revealing in all three cases antiferromagnetic exchange interactions between neighboring CuII centers and long-range order with a net moment below Tc of 13 K for compound 4.
Resumo:
To avoid the undesired deprotonation during the addition of organolithium and organomagnesium reagents to ketones, the thioiminium salts, easily prepared from lactams and amides are converted into 2,2-disubstituted and 2-monosubstituted amines by reaction with simple nucleophiles such as organocerium and organocopper reagents. The reaction of thioiminium iodides with organocerium reagents derived by transmetalation of corresponding lithium reagents with anhydrous cerium(III) chloride has been investigated. These thioiminium iodides act as good electrophiles and accept alkylceriums towards bisaddition. The newly synthesized amines have been characterized by 1H and 13C NMR, IR and mass spectra. The amines have been converted into their hydrochlorides and characterized by COSY. These hydrochlorides have been subjected to antimicrobial screening with clinically isolated microorganisms, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi and Candida albicans. The hydrochlorides show quite good activity against these bacteria and fungus.
Resumo:
Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-bound non-protein-coding RNA (ncRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [1].
Resumo:
Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-associated non-protein-coding RNA (rancRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [3].
Resumo:
Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the halophilic archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress-dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-associated non-coding RNA (rancRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [3].
Resumo:
Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.
Resumo:
The intracellular parasite Theileria parva transforms bovine T-lymphocytes, inducing uncontrolled proliferation. Upon infection, cells cease to require antigenic stimulation and exogenous growth factors to proliferate. Earlier studies have shown that pathways triggered via stimulation of the T-cell receptor are silent in transformed cells. This is reflected by a lack of phosphorylation of key signalling molecules and the fact that proliferation is not inhibited by immunosuppressants such as cyclosporin and ascomycin that target calcineurin. This suggests that the parasite bypasses the normal T-cells activation pathways to induce proliferation. Among the MAP-kinase pathways, ERK and p38 are silent, and only Jun N-terminal kinase is activated. This appears to suffice to induce constitutive activation of the transcription factor AP-1. More recently, it could be shown that the presence of the parasite in the host cell cytoplasm also induces constitutive activation of NF-kappaB, a transcription factor involved in proliferation and protection against apoptosis. Activation is effectuated by parasite-induced degradation of IkappaBs, the cytoplasmic inhibitors which sequester NF-kappaB in the cytoplasm. NF-kappaB activation is resistant to the antioxidant N-acetyl cysteine and a range of other reagents, suggesting that activation might occur in an unorthodox manner. Studies using inhibitors and dominant negative mutants demonstrate that the parasite activates a NF-kappaB-dependent anti-apoptotic mechanism that protects the transformed cell form spontaneous apoptosis and is essential for maintaining the transformed state of the parasitised cell.