33 resultados para critical path methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Recent small single-center data indicate that the current hemodynamic parameters used to diagnose critical limb ischemia are insensitive. We investigated the validity of the societal guidelines-recommended hemodynamic parameters against core laboratory-adjudicated angiographic data from the multicenter IN.PACT DEEP (RandomIzed AmPhirion DEEP DEB vs StAndard PTA for the treatment of below the knee Critical limb ischemia) Trial. METHODS Of the 358 patients in the IN.PACT DEEP Trial to assess drug-eluting balloon vs standard balloon angioplasty for infrapopliteal disease, 237 had isolated infrapopliteal disease with an available ankle-brachial index (ABI), and only 40 of the latter had available toe pressure measurements. The associations between ABI, ankle pressure, and toe pressure with tibial runoff, Rutherford category, and plantar arch were examined according to the cutoff points recommended by the societal guidelines. Abnormal tibial runoff was defined as severely stenotic (≥70%) or occluded and scored as one-, two-, or three-vessel disease. A stenotic or occluded plantar arch was considered abnormal. RESULTS Only 14 of 237 patients (6%) had an ABI <0.4. Abnormal ankle pressure, defined as <50 mm Hg if Rutherford category 4 and <70 mm Hg if Rutherford category 5 or 6, was found only in 37 patients (16%). Abnormal toe pressure, defined as <30 mm Hg if Rutherford category 4 and <50 mm Hg if Rutherford category 5 or 6, was found in 24 of 40 patients (60%) with available measurements. Importantly, 29% of these 24 patients had an ABI within normal reference ranges. A univariate multinomial logistic regression found no association between the above hemodynamic parameters and the number of diseased infrapopliteal vessels. However, there was a significant paradoxic association where patients with Rutherford category 6 had higher ABI and ankle pressure than those with Rutherford category 5. Similarly, there was no association between ABI and pedal arch patency. CONCLUSIONS The current recommended hemodynamic parameters fail to identify a significant portion of patients with lower extremity ulcers and angiographically proven severe disease. Toe pressure has better sensitivity and should be considered in all patients with critical limb ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Keel bone damage (KBD) is a critical issue facing the laying hen industry today as a result of the likely pain leading to compromised welfare and the potential for reduced productivity. Recent reports suggest that damage, while highly variable and likely dependent on a host of factors, extends to all systems (including battery cages, furnished cages, and non-cage systems), genetic lines, and management styles. Despite the extent of the problem, the research community remains uncertain as to the causes and influencing factors of KBD. Although progress has been made investigating these factors, the overall effort is hindered by several issues related to the assessment of KBD, including quality and variation in the methods used between research groups. These issues prevent effective comparison of studies, as well as difficulties in identifying the presence of damage leading to poor accuracy and reliability. The current manuscript seeks to resolve these issues by offering precise definitions for types of KBD, reviewing methods for assessment, and providing recommendations that can improve the accuracy and reliability of those assessments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Within the core accretion scenario of planetary formation, most simulations performed so far always assume the accreting envelope to have a solar composition. From the study of meteorite showers on Earth and numerical simulations, we know that planetesimals must undergo thermal ablation and disruption when crossing a protoplanetary envelope. Thus, once the protoplanet has acquired an atmosphere, not all planetesimals reach the core intact, i.e. the primordial envelope (mainly H and He) gets enriched in volatiles and silicates from the planetesimals. This change of envelope composition during the formation can have a significant effect on the final atmospheric composition and on the formation timescale of giant planets. Aims. We investigate the physical implications of considering the envelope enrichment of protoplanets due to the disruption of icy planetesimals during their way to the core. Particular focus is placed on the effect on the critical core mass for envelopes where condensation of water can occur. Methods. Internal structure models are numerically solved with the implementation of updated opacities for all ranges of metallicities and the software Chemical Equilibrium with Applications to compute the equation of state. This package computes the chemical equilibrium for an arbitrary mixture of gases and allows the condensation of some species, including water. This means that the latent heat of phase transitions is consistently incorporated in the total energy budget. Results. The critical core mass is found to decrease significantly when an enriched envelope composition is considered in the internal structure equations. A particularly strong reduction of the critical core mass is obtained for planets whose envelope metallicity is larger than Z approximate to 0.45 when the outer boundary conditions are suitable for condensation of water to occur in the top layers of the atmosphere. We show that this effect is qualitatively preserved even when the atmosphere is out of chemical equilibrium. Conclusions. Our results indicate that the effect of water condensation in the envelope of protoplanets can severely affect the critical core mass, and should be considered in future studies.