63 resultados para continuous formation of professors
Resumo:
Infection with bacteria such as Chlamydia pneumonia, Helicobacter pylori or Porphyromonas gingivalis may be triggering the secretion of inflammatory cytokines that leads to atherogenesis. The mechanisms by which the innate immune recognition of these pathogens could lead to atherosclerosis remain unclear. In this study, using human vascular endothelial cells or HEK-293 cells engineered to express pattern-recognition receptors (PRRs), we set out to determine Toll-like receptors (TLRs) and functionally associated PRRs involved in the innate recognition of and response to lipopolysaccharide (LPS) from H. pylori or P. gingivalis. Using siRNA interference or recombinant expression of cooperating PRRs, we show that H. pylori and P. gingivalis LPS-induced cell activation is mediated through TLR2. Human vascular endothelial cell activation was found to be lipid raft-dependent and to require the formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and CD11b/CD18. In addition, we report that LPS from these bacterial strains are able to antagonize TLR4. This antagonistic activity of H. pylori or P. gingivalis LPS, as well as their TLR2 activation capability may be associated with their ability to contribute to atherosclerosis.
Resumo:
The molecular engineering of cell-instructive artificial extracellular matrices is a powerful means to control cell behavior and enable complex processes of tissue formation and regeneration. This work reports on a novel method to produce such smart biomaterials by recapitulating the crosslinking chemistry and the biomolecular characteristics of the biopolymer fibrin in a synthetic analog. We use activated coagulation transglutaminase factor XIIIa for site-specific coupling of cell adhesion ligands and engineered growth factor proteins to multiarm poly(ethylene glycol) macromers that simultaneously form proteolytically sensitive hydrogel networks in the same enzyme-catalyzed reaction. Growth factor proteins are quantitatively incorporated and released upon cell-derived proteolytic degradation of the gels. Primary stromal cells can invade and proteolytically remodel these networks both in an in vitro and in vivo setting. The synthetic ease and potential to engineer their physicochemical and bioactive characteristics makes these hybrid networks true alternatives for fibrin as provisional drug delivery platforms in tissue engineering.
Resumo:
Cupiennin 1a (GFGALFKFLAKKVAKTVAKQAAKQGAKYVVNKQME-NH2) is a potent venom component of the spider Cupiennius salei. Cupiennin 1a shows multifaceted activity. In addition to known antimicrobial and cytolytic properties, cupiennin 1a inhibits the formation of nitric oxide by neuronal nitric oxide synthase at an IC50 concentration of 1.3 +/- 0.3 microM. This is the first report of neuronal nitric oxide synthase inhibition by a component of a spider venom. The mechanism by which cupiennin 1a inhibits neuronal nitric oxide synthase involves complexation with the regulatory protein calcium calmodulin. This is demonstrated by chemical shift changes that occur in the heteronuclear single quantum coherence spectrum of 15N-labelled calcium calmodulin upon addition of cupiennin 1a. The NMR data indicate strong binding within a complex of 1 : 1 stoichiometry.
Resumo:
OBJECTIVE: To compare the potential of bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7) and transforming growth factor beta1 (TGFbeta1) to effect the chondrogenic differentiation of synovial explants by analyzing the histologic, biochemical, and gene expression characteristics of the cartilaginous tissues formed. METHODS: Synovial explants derived from the metacarpal joints of calves were cultured in agarose. Initially, BMP-2 was used to evaluate the chondrogenic potential of the synovial explants under different culturing conditions. Under appropriate conditions, the chondrogenic effects of BMP-2, BMP-7, and TGFbeta1 were then compared. The differentiated tissue was characterized histologically, histomorphometrically, immunohistochemically, biochemically, and at the gene expression level. RESULTS: BMP-2 induced the chondrogenic differentiation of synovial explants in a dose- and time-dependent manner under serum- and dexamethasone-free conditions. The expression levels of cartilage-related genes increased in a time-dependent manner. BMP-7 was more potent than BMP-2 in inducing chondrogenesis, but the properties of the differentiated tissue were similar in each case. The type of cartilaginous tissue formed under the influence of TGFbeta1 differed in terms of both cell phenotype and gene expression profiles. CONCLUSION: The 3 tested members of the TGFbeta superfamily have different chondrogenic potentials and induce the formation of different types of cartilaginous tissue. To effect the full differentiation of synovial explants into a typically hyaline type of articular cartilage, further refinement of the stimulation conditions is required. This might be achieved by the simultaneous application of several growth factors.
Resumo:
OBJECTIVES: To assess retrospectively the cumulative costs for the long-term oral rehabilitation of patients with birth defects affecting the development of teeth. METHODS: Patients with birth defects who had received fixed reconstructions on teeth and/or implants > or =5 years ago were asked to participate in a comprehensive clinical, radiographic and economic evaluation. RESULTS: From the 45 patients included, 18 were cases with a cleft lip and palate, five had amelogenesis/dentinogenesis imperfecta and 22 were cases with hypodontia/oligodontia. The initial costs for the first oral rehabilitation (before the age of 20) had been covered by the Swiss Insurance for Disability. The costs for the initial rehabilitation of the 45 cases amounted to 407,584 CHF (39% for laboratory fees). Linear regression analyses for the initial treatment costs per replaced tooth revealed the formula 731 CHF+(811 CHF x units) on teeth and 3369 CHF+(1183 CHF x units) for reconstructions on implants (P<.001). Fifty-eight percent of the patients with tooth-supported reconstructions remained free from failures/complications (median observation 15.7 years). Forty-seven percent of the patients with implant-supported reconstructions remained free from failures/complications (median observation 8 years). The long-term cumulative treatment costs for implant cases, however, were not statistically significantly different compared with cases reconstructed with tooth-supported fixed reconstructions. Twenty-seven percent of the initial treatment costs were needed to cover supportive periodontal therapy as well as the treatment of technical/biological complications and failures. CONCLUSION: Insurance companies should accept to cover implant-supported reconstructions because there is no need to prepare healthy teeth, fewer tooth units need to be replaced and the cumulative long-term costs seem to be similar compared with cases restored on teeth.