40 resultados para computer network
Resumo:
In this work, we propose a distributed rate allocation algorithm that minimizes the average decoding delay for multimedia clients in inter-session network coding systems. We consider a scenario where the users are organized in a mesh network and each user requests the content of one of the available sources. We propose a novel distributed algorithm where network users determine the coding operations and the packet rates to be requested from the parent nodes, such that the decoding delay is minimized for all clients. A rate allocation problem is solved by every user, which seeks the rates that minimize the average decoding delay for its children and for itself. Since this optimization problem is a priori non-convex, we introduce the concept of equivalent packet flows, which permits to estimate the expected number of packets that every user needs to collect for decoding. We then decompose our original rate allocation problem into a set of convex subproblems, which are eventually combined to obtain an effective approximate solution to the delay minimization problem. The results demonstrate that the proposed scheme eliminates the bottlenecks and reduces the decoding delay experienced by users with limited bandwidth resources. We validate the performance of our distributed rate allocation algorithm in different video streaming scenarios using the NS-3 network simulator. We show that our system is able to take benefit of inter-session network coding for simultaneous delivery of video sessions in networks with path diversity.
Resumo:
In free viewpoint applications, the images are captured by an array of cameras that acquire a scene of interest from different perspectives. Any intermediate viewpoint not included in the camera array can be virtually synthesized by the decoder, at a quality that depends on the distance between the virtual view and the camera views available at decoder. Hence, it is beneficial for any user to receive camera views that are close to each other for synthesis. This is however not always feasible in bandwidth-limited overlay networks, where every node may ask for different camera views. In this work, we propose an optimized delivery strategy for free viewpoint streaming over overlay networks. We introduce the concept of layered quality-of-experience (QoE), which describes the level of interactivity offered to clients. Based on these levels of QoE, camera views are organized into layered subsets. These subsets are then delivered to clients through a prioritized network coding streaming scheme, which accommodates for the network and clients heterogeneity and effectively exploit the resources of the overlay network. Simulation results show that, in a scenario with limited bandwidth or channel reliability, the proposed method outperforms baseline network coding approaches, where the different levels of QoE are not taken into account in the delivery strategy optimization.
Resumo:
Recognizing the potentially ruinous effect of negative reviews on the reputation of the hosts as well as a subjective nature of the travel experience judgements, peer-to-peer accommodation sharing plat-forms, like Airbnb, have readily embraced the “response” option, empowering hosts with the voice to challenge, deny or at least apologize for the subject of critique. However, the effects of different re-sponse strategies on trusting beliefs towards the host remain unclear. To fill this gap, this study focus-es on understanding the impact of different response strategies and review negativity on trusting be-liefs towards the host in peer-to-peer accommodation sharing setting utilizing experimental methods. Examination of two different contexts, varying in the controllability of the subject of complaint, re-veals that when the subject of complaint is controllable by a host, such strategies as confession / apol-ogy and denial can improve trusting beliefs towards the host. However, when the subject of criticism is beyond the control of the host, denial of the issue does not yield guest’s confidence in the host, where-as confession and excuse have positive influence on trusting beliefs.
Resumo:
In this paper, we present a revolutionary vision of 5G networks, in which SDN programs wireless network functions, and where Mobile Network Operators (MNO), Enterprises, and Over-The-Top (OTT) third parties are provided with NFV-ready Network Store. The proposed Network Store serves as a digital distribution platform of programmable Virtualized Network Functions (VNFs) that enable 5G application use-cases. Currently existing application stores, such as Apple's App Store for iOS applications, Google's Play Store for Android, or Ubuntu's Software Center, deliver applications to user specific software platforms. Our vision is to provide a digital marketplace, gathering 5G enabling Network Applications and Network Functions, written to run on top of commodity cloud infrastructures, connected to remote radio heads (RRH). The 5G Network Store will be the same to the cloud as the application store is currently to a software platform.
Resumo:
The objective of this article is to demonstrate the feasibility of on-demand creation of cloud-based elastic mobile core networks, along with their lifecycle management. For this purpose the article describes the key elements to realize the architectural vision of EPC as a Service, an implementation option of the Evolved Packet Core, as specified by 3GPP, which can be deployed in cloud environments. To meet several challenging requirements associated with the implementation of EPC over a cloud infrastructure and providing it “as a Service,” this article presents a number of different options, each with different characteristics, advantages, and disadvantages. A thorough analysis comparing the different implementation options is also presented.
Resumo:
In this work, we will give a detailed tutorial instruction about how to use the Mobile Multi-Media Wireless Sensor Networks (M3WSN) simulation framework. The M3WSN framework has been published as a scientific paper in the 6th International Workshop on OMNeT++ (2013) [1]. M3WSN framework enables the multimedia transmission of real video se- quence. Therefore, a set of multimedia algorithms, protocols, and services can be evaluated by using QoE metrics. Moreover, key video-related information, such as frame types, GoP length and intra-frame dependency can be used for creating new assessment and optimization solutions. To support mobility, M3WSN utilizes different mobility traces to enable the understanding of how the network behaves under mobile situations. This tutorial will cover how to install and configure the M3WSN framework, setting and running the experiments, creating mobility and video traces, and how to evaluate the performance of different protocols. The tutorial will be given in an environment of Ubuntu 12.04 LTS and OMNeT++ 4.2.
Resumo:
In this work, we propose a novel network coding enabled NDN architecture for the delivery of scalable video. Our scheme utilizes network coding in order to address the problem that arises in the original NDN protocol, where optimal use of the bandwidth and caching resources necessitates the coordination of the forwarding decisions. To optimize the performance of the proposed network coding based NDN protocol and render it appropriate for transmission of scalable video, we devise a novel rate allocation algorithm that decides on the optimal rates of Interest messages sent by clients and intermediate nodes. This algorithm guarantees that the achieved flow of Data objects will maximize the average quality of the video delivered to the client population. To support the handling of Interest messages and Data objects when intermediate nodes perform network coding, we modify the standard NDN protocol and introduce the use of Bloom filters, which store efficiently additional information about the Interest messages and Data objects. The proposed architecture is evaluated for transmission of scalable video over PlanetLab topologies. The evaluation shows that the proposed scheme performs very close to the optimal performance
Resumo:
Neolithic and Bronze Age wetland sites around the Alps (so called pile-dwellings, Pfahlbauten or palafittes in German/French) are of outstanding universal value (UNESCO-world heritage since 2011). Typical sites are in lakes, rivers and bogs, dating between 5300 and 800 BC. Of common character is the perfect conservation of wood, textiles from plant fabrics and many other organic materials. Larger quantities of sub-fossilized wood, as in the peri-alpine sites, offer the possibility of high-precision dating by dendrochronology. Research in these wetland sites started in the mid-19th century. Through large scale rescue excavations since the 1970s and the evolution of underwater archaeology in the same period the Swiss accumulated a thorough experience with these specific sites. Research in wetland sites is shared between cantonal institutions and universities and led to a worldwide unique accumulation of knowledge. Comparable sites exist outside of the Alpine area, but in much smaller quantities. Regions like Russia (small lakes in NW-Russia) and Macedonia (medium size lakes in the border zone of Macedonia, Albania and Greece) have a high scientific potential; rivers in Ukraine are supposed to have the same type of sites.
Resumo:
Content-Centric Networking (CCN) naturally supports multi-path communication, as it allows the simultaneous use of multiple interfaces (e.g. LTE and WiFi). When multiple sources and multiple clients are considered, the optimal set of distribution trees should be determined in order to optimally use all the available interfaces. This is not a trivial task, as it is a computationally intense procedure that should be done centrally. The need for central coordination can be removed by employing network coding, which also offers improved resiliency to errors and large throughput gains. In this paper, we propose NetCodCCN, a protocol for integrating network coding in CCN. In comparison to previous works proposing to enable network coding in CCN, NetCodCCN permit Interest aggregation and Interest pipelining, which reduce the data retrieval times. The experimental evaluation shows that the proposed protocol leads to significant improvements in terms of content retrieval delay compared to the original CCN. Our results demonstrate that the use of network coding adds robustness to losses and permits to exploit more efficiently the available network resources. The performance gains are verified for content retrieval in various network scenarios.
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
Resumo:
Automated tissue characterization is one of the most crucial components of a computer aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research has been conducted in this field, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as medical image analysis. In this paper, we propose and evaluate a convolutional neural network (CNN), designed for the classification of ILD patterns. The proposed network consists of 5 convolutional layers with 2×2 kernels and LeakyReLU activations, followed by average pooling with size equal to the size of the final feature maps and three dense layers. The last dense layer has 7 outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micronodules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation. To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120 CT scans from different scanners and hospitals. To the best of our knowledge, this is the first deep CNN designed for the specific problem. A comparative analysis proved the effectiveness of the proposed CNN against previous methods in a challenging dataset. The classification performance (~85.5%) demonstrated the potential of CNNs in analyzing lung patterns. Future work includes, extending the CNN to three-dimensional data provided by CT volume scans and integrating the proposed method into a CAD system that aims to provide differential diagnosis for ILDs as a supportive tool for radiologists.