53 resultados para cholesterol-lowering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of (125)I-apoA-I and (3)H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular (3)H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell(®) plates. The amounts of isolated EPM and the maximal binding capacity of (125)I-apoA-I to EPM differed depending on the MG's physiological state, while the kinetics of (3)H-cholesterol and (125)I-apoA-I binding were similar. (3)H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of (125)I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of (125)I-apoA-I ranged between 40-74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and (125)I-apoA-I binding. The ABCA1 inhibitor Probucol displaced (125)I-apoA-I binding to EPM and reduced (3)H-cholesterol efflux in MeBo. Time-dependent (3)H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell(®) plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of (3)H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects. Our findings support the importance of the apoA-I/ABCA1 pathway in MG cholesterol transport and suggest its role in influencing milk composition and directing cholesterol back into the bloodstream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The milk-producing alveolar epithelial cells secrete milk that remains after birth the principal source of nutrients for neonates. Milk secretion and composition are highly regulated processes via integrated actions of hormones and local factors which involve specific receptors and downstream signal transduction pathways. Overall milk composition is similar among mammalian species, although the content of individual constituents such as lipids may significantly differ from one species to another. The milk lipid fraction is essentially composed of triglycerides, which represent more than 95 % of the total lipids in human and commercialized bovine milk. Though sterols, including cholesterol, which is the major milk sterol, represent less than 0.5 % of the total milk lipid fraction, they are of key importance for several biological processes. Cholesterol is required for the formation of biological membranes especially in rapidly growing organisms, and for the synthesis of sterol-based compounds. Cholesterol found in milk originates predominantly from blood uptake and, to a certain extent, from local synthesis in the mammary tissue. The present review summarizes current knowledge on cellular mechanisms and regulatory processes determining intra- and transcellular cholesterol transport in the mammary gland. Cholesterol exchanges between the blood, the mammary alveolar cells and the milk, and the likely role of active cholesterol transporters in these processes are discussed. In this context, the hormonal regulation and signal transduction pathways promoting active cholesterol transport as well as potential regulatory crosstalks are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals milk is the principal nutrient for neonates at birth. The basic milk composition is similar between different mammals, but the content of individual constituents such as lipids may differ significantly from one species to another. The milk fat fraction is mainly composed of triglycerides which account for more than 95% of the lipids found in human and bovine milk. Though sterols and in particular cholesterol, the predominant milk sterol, represent less than 0.5% of the total milk lipid fraction, they are of ultimate importance for biological processes such as the formation of biological membranes or as precursors for steroid hormone synthesis. Cholesterol found in milk originates either from blood uptake or from local synthesis. This chapter provides an overview of cholesterol exchanges between the blood, the mammary tissue and the milk. The current knowledge on the expression, localization and function of candidate cholesterol transporters in mammary tissues of human, murine and bovine origin is summarized. Different mechanisms of how cholesterol can be transferred via the mammary tissue into milk, and which active cholesterol transporters are likely to play a role in this process will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS High-density lipoprotein (HDL) cholesterol is a strong predictor of cardiovascular mortality. This work aimed to investigate whether the presence of coronary artery disease (CAD) impacts on its predictive value. METHODS AND RESULTS We studied 3141 participants (2191 males, 950 females) of the LUdwigshafen RIsk and Cardiovascular health (LURIC) study. They had a mean ± standard deviation age of 62.6 ± 10.6 years, body mass index of 27.5 ± 4.1 kg/m², and HDL cholesterol of 38.9 ± 10.8 mg/dL. The cohort consisted of 699 people without CAD, 1515 patients with stable CAD, and 927 patients with unstable CAD. The participants were prospectively followed for cardiovascular mortality over a median (inter-quartile range) period of 9.9 (8.7-10.7) years. A total of 590 participants died from cardiovascular diseases. High-density lipoprotein cholesterol by tertiles was inversely related to cardiovascular mortality in the entire cohort (P = 0.009). There was significant interaction between HDL cholesterol and CAD in predicting the outcome (P = 0.007). In stratified analyses, HDL cholesterol was strongly associated with cardiovascular mortality in people without CAD [3rd vs. 1st tertile: HR (95% CI) = 0.37 (0.18-0.74), P = 0.005], but not in patients with stable [3rd vs. 1st tertile: HR (95% CI) = 0.81 (0.61-1.09), P = 0.159] and unstable [3rd vs. 1st tertile: HR (95% CI) = 0.91 (0.59-1.41), P = 0.675] CAD. These results were replicated by analyses in 3413 participants of the AtheroGene cohort and 5738 participants of the ESTHER cohort, and by a meta-analysis comprising all three cohorts. CONCLUSION The inverse relationship of HDL cholesterol with cardiovascular mortality is weakened in patients with CAD. The usefulness of considering HDL cholesterol for cardiovascular risk stratification seems limited in such patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the general population, HDL cholesterol (HDL-C) is associated with reduced cardiovascular events. However, recent experimental data suggest that the vascular effects of HDL can be heterogeneous. We examined the association of HDL-C with all-cause and cardiovascular mortality in the Ludwigshafen Risk and Cardiovascular Health study comprising 3307 patients undergoing coronary angiography. Patients were followed for a median of 9.9 years. Estimated GFR (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration eGFR creatinine-cystatin C (eGFRcreat-cys) equation. The effect of increasing HDL-C serum levels was assessed using Cox proportional hazard models. In participants with normal kidney function (eGFR>90 ml/min per 1.73 m(2)), higher HDL-C was associated with reduced risk of all-cause and cardiovascular mortality and coronary artery disease severity (hazard ratio [HR], 0.51, 95% confidence interval [95% CI], 0.26-0.92 [P=0.03]; HR, 0.30, 95% CI, 0.13-0.73 [P=0.01]). Conversely, in patients with mild (eGFR=60-89 ml/min per 1.73 m(2)) and more advanced reduced kidney function (eGFR<60 ml/min per 1.73 m(2)), higher HDL-C did not associate with lower risk for mortality (eGFR=60-89 ml/min per 1.73 m(2): HR, 0.68, 95% CI, 0.45-1.04 [P=0.07]; HR, 0.84, 95% CI, 0.50-1.40 [P=0.50]; eGFR<60 ml/min per 1.73 m(2): HR, 1.18, 95% CI, 0.60-1.81 [P=0.88]; HR, 0.82, 95% CI, 0.40-1.69 [P=0.60]). Moreover, Cox regression analyses revealed interaction between HDL-C and eGFR in predicting all-cause and cardiovascular mortality (P=0.04 and P=0.02, respectively). We confirmed a lack of association between higher HDL-C and lower mortality in an independent cohort of patients with definite CKD (P=0.63). In summary, higher HDL-C levels did not associate with reduced mortality risk and coronary artery disease severity in patients with reduced kidney function. Indeed, abnormal HDL function might confound the outcome of HDL-targeted therapies in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High concentrations of HDL cholesterol are considered to indicate efficient reverse cholesterol transport and to protect from atherosclerosis. However, HDL has been suggested to be dysfunctional in ESRD. Hence, our main objective was to investigate the effect of HDL cholesterol on outcomes in maintenance hemodialysis patients with diabetes. Moreover, we investigated the associations between the major protein components of HDL (apoA1, apoA2, and apoC3) and end points. We performed an exploratory, post hoc analysis with 1255 participants (677 men and 578 women) of the German Diabetes Dialysis study. The mean age was 66.3 years and the mean body mass index was 28.0 kg/m(2). The primary end point was a composite of cardiac death, myocardial infarction, and stroke. The secondary end point included all-cause mortality. The mean duration of follow-up was 3.9 years. A total of 31.3% of the study participants reached the primary end point and 49.1% died from any cause. HDL cholesterol and apoA1 and apoC3 quartiles were not related to end points. However, there was a trend toward an inverse association between apoA2 and all-cause mortality. The hazard ratio for death from any cause in the fourth quartile compared with the first quartile of apoA2 was 0.63 (95% confidence interval, 0.40 to 0.89). The lack of an association between HDL cholesterol and cardiovascular risk may support the concept of dysfunctional HDL in hemodialysis. The possible beneficial effect of apoA2 on survival requires confirmation in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE This EAS Consensus Panel critically appraised evidence relevant to the benefit to risk relationship of functional foods with added plant sterols and/or plant stanols, as components of a healthy lifestyle, to reduce plasma low-density lipoprotein-cholesterol (LDL-C) levels, and thereby lower cardiovascular risk. METHODS AND RESULTS Plant sterols/stanols (when taken at 2 g/day) cause significant inhibition of cholesterol absorption and lower LDL-C levels by between 8 and 10%. The relative proportions of cholesterol versus sterol/stanol levels are similar in both plasma and tissue, with levels of sterols/stanols being 500-/10,000-fold lower than those of cholesterol, suggesting they are handled similarly to cholesterol in most cells. Despite possible atherogenicity of marked elevations in circulating levels of plant sterols/stanols, protective effects have been observed in some animal models of atherosclerosis. Higher plasma levels of plant sterols/stanols associated with intakes of 2 g/day in man have not been linked to adverse effects on health in long-term human studies. Importantly, at this dose, plant sterol/stanol-mediated LDL-C lowering is additive to that of statins in dyslipidaemic subjects, equivalent to doubling the dose of statin. The reported 6-9% lowering of plasma triglyceride by 2 g/day in hypertriglyceridaemic patients warrants further evaluation. CONCLUSION Based on LDL-C lowering and the absence of adverse signals, this EAS Consensus Panel concludes that functional foods with plant sterols/stanols may be considered 1) in individuals with high cholesterol levels at intermediate or low global cardiovascular risk who do not qualify for pharmacotherapy, 2) as an adjunct to pharmacologic therapy in high and very high risk patients who fail to achieve LDL-C targets on statins or are statin- intolerant, 3) and in adults and children (>6 years) with familial hypercholesterolaemia, in line with current guidance. However, it must be acknowledged that there are no randomised, controlled clinical trial data with hard end-points to establish clinical benefit from the use of plant sterols or plant stanols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The achievement rate of recommended low-density lipoprotein cholesterol (LDL-C) targets of < 1.8 mmol/l for secondary prevention in very high risk patients is difficult. Observational studies reported that loss of function mutation of the PCS9 was associated with LDL-C decrease level and reduction of cardiovascular events. Monoclonal antibodies to PCSK9 (REGN727 and AMG 145, PSCK9 inhibitors) have been tested in clinical studies of phase I and II and showed LDL-C level reduction of 60-70% compared to placebo. This approach appears safe and well-tolerated. The PCSK9 inhibitors are now tested in large phase III clinical studies to assess the long-term safety and efficacy of this new promising approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fetal serum cholesterol and lipoprotein concentrations differ between preterm and term born neonates. An imbalance of the flow of cholesterol from the sites of synthesis or efflux from cells of peripheral organs to the liver, the reverse cholesterol transport (RCT), is linked to atherosclerosis and cardiovascular disease (CVD). Preterm delivery is a risk factor for the development of CVD. Thus, we hypothesized that RCT is affected by a diminished cholesterol acceptor capacity in preterm as compared to term fetuses. Cholesterol efflux assays were performed in RAW264.7, HepG2, and HUVEC cell lines. In the presence and absence of ABC transporter overexpression by TO-901317, umbilical cord sera of preterm and term born neonates (n = 28 in both groups) were added. Lipid components including high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoprotein A1, and apolipoprotein E were measured and related to fractional cholesterol efflux values. We found overall, fractional cholesterol efflux to remain constant between the study groups, and over gestational ages at delivery, respectively. However, correlation analysis revealed cholesterol efflux values to be predominantly related to HDL concentration at term, while in preterm neonates, cholesterol efflux was mainly associated with LDL In conclusion cholesterol acceptor capacity during fetal development is kept in a steady state with different mechanisms and lipid fractions involved at distinct stages during the second half of fetal development. However, RCT mechanisms in preterm neonates seem not to be involved in the development of CVD later in life suggesting rather changes in the lipoprotein pattern causative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Hemodialysis patients are high absorbers of intestinal cholesterol; they benefit less than other patient groups from statin therapy, which inhibits cholesterol synthesis. OBJECTIVES This study sought to investigate whether the individual cholesterol absorption rate affects atorvastatin's effectiveness to reduce cardiovascular risk in hemodialysis patients. METHODS This post-hoc analysis included 1,030 participants in the German Diabetes and Dialysis Study (4D) who were randomized to either 20 mg of atorvastatin (n = 519) or placebo (n = 511). The primary endpoint was a composite of major cardiovascular events. Secondary endpoints included all-cause mortality and all cardiac events. Tertiles of the cholestanol-to-cholesterol ratio, which is an established biomarker of cholesterol absorption, were used to identify high and low cholesterol absorbers. RESULTS A total of 454 primary endpoints occurred. On multivariate time-to-event analyses, the interaction term between tertiles and treatment with atorvastatin was significantly associated with the risk of reaching the primary endpoint. Stratified analysis by cholestanol-to-cholesterol ratio tertiles confirmed this effect modification: atorvastatin reduced the risk of reaching the primary endpoint in the first tertile (hazard ratio [HR]: 0.72; p = 0.049), but not the second (HR: 0.79; p = 0.225) or third tertiles (HR: 1.21; p = 0.287). Atorvastatin consistently significantly reduced all-cause mortality and the risk of all cardiac events in only the first tertile. CONCLUSIONS Intestinal cholesterol absorption, as reflected by cholestanol-to-cholesterol ratios, predicts the effectiveness of atorvastatin to reduce cardiovascular risk in hemodialysis patients. Those with low cholesterol absorption appear to benefit from treatment with atorvastatin, whereas those with high absorption do not benefit.