44 resultados para cholesterol ester storage disease
Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease
Resumo:
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD), the most common cause of liver disease in children, is associated with obesity and insulin resistance. However, the relationship between NAFLD and cardiovascular risk factors in children is not fully understood. The objective of this study was to determine the association between NAFLD and the presence of metabolic syndrome in overweight and obese children. METHODS AND RESULTS: This case-control study of 150 overweight children with biopsy-proven NAFLD and 150 overweight children without NAFLD compared rates of metabolic syndrome using Adult Treatment Panel III criteria. Cases and controls were well matched in age, sex, and severity of obesity. Children with NAFLD had significantly higher fasting glucose, insulin, total cholesterol, low-density lipoprotein cholesterol, triglycerides, systolic blood pressure, and diastolic blood pressure than overweight and obese children without NAFLD. Subjects with NAFLD also had significantly lower high-density lipoprotein cholesterol than controls. After adjustment for age, sex, race, ethnicity, body mass index, and hyperinsulinemia, children with metabolic syndrome had 5.0 (95% confidence interval, 2.6 to 9.7) times the odds of having NAFLD as overweight and obese children without metabolic syndrome. CONCLUSIONS: NAFLD in overweight and obese children is strongly associated with multiple cardiovascular risk factors. The identification of NAFLD in a child should prompt global counseling to address nutrition, physical activity, and avoidance of smoking to prevent the development of cardiovascular disease and type 2 diabetes.
Resumo:
BACKGROUND: Though guidelines emphasize low-density lipoprotein cholesterol (LDL-C) lowering as an essential strategy for cardiovascular risk reduction, achieving target levels may be difficult. PATIENTS AND METHODS: The authors conducted a prospective, controlled, open-label trial examining the effectiveness and safety of high-dose fluvastatin or a standard dosage of simvastatin plus ezetimibe, both with an intensive guideline-oriented cardiac rehabilitation program, in achieving the new ATP III LDL-C targets in patients with proven coronary artery disease. 305 consecutive patients were enrolled in the study. Patients were divided into two groups: the simvastatin (40 mg/d) plus ezetimibe (10 mg/d) and the fluvastatin-only group (80 mg/d). Patients in both study groups received the treatment for 21 days in addition to nonpharmacological measures, including advanced physical, dietary, psychosocial, and educational activities. RESULTS: After 21 days of treatment, a significant reduction in LDL-C was found in both study groups as compared to the initial values, however, the reduction in LDL-C was significantly stronger in the simvastatin plus ezetimibe group: simvastatin plus ezetimibe treatment decreased LDL-C to a mean level of 57.7 +/- 1.7 mg/ml, while fluvastatin achieved a reduction to 84.1 +/- 2.4 mg/ml (p < 0.001). In the simvastatin plus ezetimibe group, 95% of the patients reached the target level of LDL-C < 100 mg/dl. This percentage was significantly higher than in patients treated with fluvastatin alone (75%; p < 0.001). The greater effectiveness of simvastatin plus ezetimibe was more impressive when considering the optional goal of LDL-C < 70 mg/dl (75% vs. 32%, respectively; p < 0.001). There was no difference in occurrence of adverse events between both groups. CONCLUSION: Simvastatin 40 mg/d plus ezetimibe 10 mg/d, on the background of a guideline-oriented standardized intensive cardiac rehabilitation program, can reach 95% effectiveness in achieving challenging goals (LDL < 100 mg/dl) using lipid-lowering medication in patients at high cardiovascular risk.
Resumo:
The following is an analysis of the role of computer aided surgery by infralabyrinthine-subcochlear approach to the petrous apex for cholesterol granulomas with hearing preservation. In a retrospective case review from 1996 to 2008 six patients were analysed in our tertiary referral centre, otorhinolaryngology outpatient clinic. Excellent intraoperative localisation of the carotid artery, facial nerve and the entrance into the cholesterol cyst of the bone by means of the navigation system was seen. Additionally, the operation time decreased from an initial 4 h down to 2 h. The application of computer-aided surgery allows intraoperative monitoring of the position of the tip of the microsurgical instruments in case of a rare disease and in the delicate area of the petrous apex giving a high security level.
Resumo:
Lipoproteins are a heterogeneous population of blood plasma particles composed of apolipoproteins and lipids. Lipoproteins transport exogenous and endogenous triglycerides and cholesterol from sites of absorption and formation to sites of storage and usage. Three major classes of lipoproteins are distinguished according to their density: high-density (HDL), low-density (LDL) and very low-density lipoproteins (VLDL). While HDLs contain mainly apolipoproteins of lower molecular weight, the two other classes contain apolipoprotein B and apolipoprotein (a) together with triglycerides and cholesterol. HDL concentrations were found to be inversely related to coronary heart disease and LDL/VLDL concentrations directly related. Although many studies have been published in this area, few have concentrated on the exact protein composition of lipoprotein particles. Lipoproteins were separated by density gradient ultracentrifugation into different subclasses. Native gel electrophoresis revealed different gel migration behaviour of the particles, with less dense particles having higher apparent hydrodynamic radii than denser particles. Apolipoprotein composition profiles were measured by matrix-assisted laser desorption/ionization-mass spectrometry on a macromizer instrument, equipped with the recently introduced cryodetector technology, and revealed differences in apolipoprotein composition between HDL subclasses. By combining these profiles with protein identifications from native and denaturing polyacrylamide gels by liquid chromatography-tandem mass spectrometry, we characterized comprehensively the exact protein composition of different lipoprotein particles. We concluded that the differential display of protein weight information acquired by macromizer mass spectrometry is an excellent tool for revealing structural variations of different lipoprotein particles, and hence the foundation is laid for the screening of cardiovascular disease risk factors associated with lipoproteins.
Resumo:
INTRODUCTION Transplacental feto-maternal lipid exchange through the ATP-binding cassette transporters ABCA1 and ABCG1 is important for normal fetal development. However, only scarce and conflicting data exist on the involvement of these transporters in gestational disease. METHODS Placenta samples (n = 72) derived from common gestational diseases, including pre-eclampsia (PE), HELLP, intrauterine growth restriction (IUGR), intrahepatic cholestasis of pregnancy and gestational diabetes, were assessed for their ABCA1 and ABCG1 expression levels and compared to age-matched control placentas with qRT-PCR and immunohistochemistry. ABCA1 expression was additionally investigated with immunoblot in placental membrane vesicles. Furthermore, placental cholesterol and phospholipid contents were assessed. RESULTS ABCA1 mRNA levels differed significantly between preterm and term control placentas (p = 0.0013). They were down-regulated in isolated PE and PE with IUGR (p = 0.0006 and p = 0.0012, respectively), but unchanged in isolated IUGR, isolated HELLP and other gestational diseases compared to gestational age-matched controls. Correspondingly, in PE, ABCA1 protein expression was significantly reduced in the apical membrane of the villous syncytiotrophoblast (p = 0.011) and in villous fetal endothelial cells (p = 0.036). Furthermore, in PE there was a significant increase in the placental content of total and individual classes of phospholipids which were partially correlated with diminished ABCA1 expression. Conversely, ABCG1 mRNA and protein levels were stable in the investigated conditions. CONCLUSIONS In gestational disease, there is a specific down-regulation of placental ABCA1 expression at sites of feto-maternal lipid exchange in PE. At a functional level, the increase in placental lipid concentrations provides indirect evidence of an impaired transport capacity of ABCA1 in this disease.
Resumo:
The intrauterine environment is a major contributor to increased rates of metabolic disease in adults. Intrahepatic cholestasis of pregnancy (ICP) is a liver disease of pregnancy that affects 0.5%-2% of pregnant women and is characterized by increased bile acid levels in the maternal serum. The influence of ICP on the metabolic health of offspring is unknown. We analyzed the Northern Finland birth cohort 1985-1986 database and found that 16-year-old children of mothers with ICP had altered lipid profiles. Males had increased BMI, and females exhibited increased waist and hip girth compared with the offspring of uncomplicated pregnancies. We further investigated the effect of maternal cholestasis on the metabolism of adult offspring in the mouse. Females from cholestatic mothers developed a severe obese, diabetic phenotype with hepatosteatosis following a Western diet, whereas matched mice not exposed to cholestasis in utero did not. Female littermates were susceptible to metabolic disease before dietary challenge. Human and mouse studies showed an accumulation of lipids in the fetoplacental unit and increased transplacental cholesterol transport in cholestatic pregnancy. We believe this is the first report showing that cholestatic pregnancy in the absence of altered maternal BMI or diabetes can program metabolic disease in the offspring.
Resumo:
The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.
Resumo:
In the general population, HDL cholesterol (HDL-C) is associated with reduced cardiovascular events. However, recent experimental data suggest that the vascular effects of HDL can be heterogeneous. We examined the association of HDL-C with all-cause and cardiovascular mortality in the Ludwigshafen Risk and Cardiovascular Health study comprising 3307 patients undergoing coronary angiography. Patients were followed for a median of 9.9 years. Estimated GFR (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration eGFR creatinine-cystatin C (eGFRcreat-cys) equation. The effect of increasing HDL-C serum levels was assessed using Cox proportional hazard models. In participants with normal kidney function (eGFR>90 ml/min per 1.73 m(2)), higher HDL-C was associated with reduced risk of all-cause and cardiovascular mortality and coronary artery disease severity (hazard ratio [HR], 0.51, 95% confidence interval [95% CI], 0.26-0.92 [P=0.03]; HR, 0.30, 95% CI, 0.13-0.73 [P=0.01]). Conversely, in patients with mild (eGFR=60-89 ml/min per 1.73 m(2)) and more advanced reduced kidney function (eGFR<60 ml/min per 1.73 m(2)), higher HDL-C did not associate with lower risk for mortality (eGFR=60-89 ml/min per 1.73 m(2): HR, 0.68, 95% CI, 0.45-1.04 [P=0.07]; HR, 0.84, 95% CI, 0.50-1.40 [P=0.50]; eGFR<60 ml/min per 1.73 m(2): HR, 1.18, 95% CI, 0.60-1.81 [P=0.88]; HR, 0.82, 95% CI, 0.40-1.69 [P=0.60]). Moreover, Cox regression analyses revealed interaction between HDL-C and eGFR in predicting all-cause and cardiovascular mortality (P=0.04 and P=0.02, respectively). We confirmed a lack of association between higher HDL-C and lower mortality in an independent cohort of patients with definite CKD (P=0.63). In summary, higher HDL-C levels did not associate with reduced mortality risk and coronary artery disease severity in patients with reduced kidney function. Indeed, abnormal HDL function might confound the outcome of HDL-targeted therapies in these patients.
Resumo:
Epidemiological, clinical, and experimental evidence has accumulated during the last decades suggesting that high-density lipoproteins (HDLs) may protect from atherosclerosis and its clinical consequences. However, more than 55 years after the first description of the link between HDL and heart attacks, many facets of the biochemistry, function, and clinical significance of HDL remain enigmatic. This applies particularly to the completely unexpected results that became available from some recent clinical trials of nicotinic acid and of inhibitors of cholesteryl ester transfer protein (CETP). The concept that raising HDL cholesterol by pharmacological means would decrease the risk of vascular disease has therefore been challenged.
Resumo:
With the progressing course of Alzheimer's disease (AD), deficits in declarative memory increasingly restrict the patients' daily activities. Besides the more apparent episodic (biographical) memory impairments, the semantic (factual) memory is also affected by this neurodegenerative disorder. The episodic pathology is well explored; instead the underlying neurophysiological mechanisms of the semantic deficits remain unclear. For a profound understanding of semantic memory processes in general and in AD patients, the present study compares AD patients with healthy controls and Semantic Dementia (SD) patients, a dementia subgroup that shows isolated semantic memory impairments. We investigate the semantic memory retrieval during the recording of an electroencephalogram, while subjects perform a semantic priming task. Precisely, the task demands lexical (word/nonword) decisions on sequentially presented word pairs, consisting of semantically related or unrelated prime-target combinations. Our analysis focuses on group-dependent differences in the amplitude and topography of the event related potentials (ERP) evoked by related vs. unrelated target words. AD patients are expected to differ from healthy controls in semantic retrieval functions. The semantic storage system itself, however, is thought to remain preserved in AD, while SD patients presumably suffer from the actual loss of semantic representations.
Resumo:
OBJECTIVE This EAS Consensus Panel critically appraised evidence relevant to the benefit to risk relationship of functional foods with added plant sterols and/or plant stanols, as components of a healthy lifestyle, to reduce plasma low-density lipoprotein-cholesterol (LDL-C) levels, and thereby lower cardiovascular risk. METHODS AND RESULTS Plant sterols/stanols (when taken at 2 g/day) cause significant inhibition of cholesterol absorption and lower LDL-C levels by between 8 and 10%. The relative proportions of cholesterol versus sterol/stanol levels are similar in both plasma and tissue, with levels of sterols/stanols being 500-/10,000-fold lower than those of cholesterol, suggesting they are handled similarly to cholesterol in most cells. Despite possible atherogenicity of marked elevations in circulating levels of plant sterols/stanols, protective effects have been observed in some animal models of atherosclerosis. Higher plasma levels of plant sterols/stanols associated with intakes of 2 g/day in man have not been linked to adverse effects on health in long-term human studies. Importantly, at this dose, plant sterol/stanol-mediated LDL-C lowering is additive to that of statins in dyslipidaemic subjects, equivalent to doubling the dose of statin. The reported 6-9% lowering of plasma triglyceride by 2 g/day in hypertriglyceridaemic patients warrants further evaluation. CONCLUSION Based on LDL-C lowering and the absence of adverse signals, this EAS Consensus Panel concludes that functional foods with plant sterols/stanols may be considered 1) in individuals with high cholesterol levels at intermediate or low global cardiovascular risk who do not qualify for pharmacotherapy, 2) as an adjunct to pharmacologic therapy in high and very high risk patients who fail to achieve LDL-C targets on statins or are statin- intolerant, 3) and in adults and children (>6 years) with familial hypercholesterolaemia, in line with current guidance. However, it must be acknowledged that there are no randomised, controlled clinical trial data with hard end-points to establish clinical benefit from the use of plant sterols or plant stanols.
Resumo:
Fetal serum cholesterol and lipoprotein concentrations differ between preterm and term born neonates. An imbalance of the flow of cholesterol from the sites of synthesis or efflux from cells of peripheral organs to the liver, the reverse cholesterol transport (RCT), is linked to atherosclerosis and cardiovascular disease (CVD). Preterm delivery is a risk factor for the development of CVD. Thus, we hypothesized that RCT is affected by a diminished cholesterol acceptor capacity in preterm as compared to term fetuses. Cholesterol efflux assays were performed in RAW264.7, HepG2, and HUVEC cell lines. In the presence and absence of ABC transporter overexpression by TO-901317, umbilical cord sera of preterm and term born neonates (n = 28 in both groups) were added. Lipid components including high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoprotein A1, and apolipoprotein E were measured and related to fractional cholesterol efflux values. We found overall, fractional cholesterol efflux to remain constant between the study groups, and over gestational ages at delivery, respectively. However, correlation analysis revealed cholesterol efflux values to be predominantly related to HDL concentration at term, while in preterm neonates, cholesterol efflux was mainly associated with LDL In conclusion cholesterol acceptor capacity during fetal development is kept in a steady state with different mechanisms and lipid fractions involved at distinct stages during the second half of fetal development. However, RCT mechanisms in preterm neonates seem not to be involved in the development of CVD later in life suggesting rather changes in the lipoprotein pattern causative.
Resumo:
With no approved pharmacological treatment, non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here we show that a high-fat high-sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic NAD(+) levels driving reductions in hepatic mitochondrial content, function and ATP levels, in conjunction with robust increases in hepatic weight, lipid content and peroxidation in C57BL/6J mice. In an effort to assess the effect of NAD(+) repletion on the development of steatosis in mice, nicotinamide riboside (NR), a precursor for NAD(+) biosynthesis, was given to mice concomitant, as preventive strategy (NR-Prev), and as a therapeutic intervention (NR-Ther), to a HFHS diet. We demonstrate that NR prevents and reverts NAFLD by inducing a SIRT1- and SIRT3-dependent mitochondrial unfolded protein response (UPR(mt) ), triggering an adaptive mitohormetic pathway to increase hepatic β-oxidation and mitochondrial complex content and activity. The cell-autonomous beneficial component of NR treatment was revealed in liver-specific Sirt1 KO mice (Sirt1(hep-/-) ), while Apolipoprotein E-deficient (Apoe(-/-) ) mice challenged with a high-fat high-cholesterol diet (HFC), affirmed the use of NR in other independent models of NAFLD. CONCLUSION Our data warrant the future evaluation of NAD(+) boosting strategies to manage the development or progression of NAFLD. This article is protected by copyright. All rights reserved.
Resumo:
BACKGROUND Cholesterol deficiency (CD), a newly identified autosomal recessive genetic defect in Holstein cattle, is associated with clinical signs of diarrhea, failure to thrive, and hypocholesterolemia. HYPOTHESIS/OBJECTIVES The objective is to describe the clinicopathological phenotype of affected Holstein cattle homozygous for the causative apolipoprotein B gene (APOB) mutation. ANIMALS Six Holstein cattle, 5 calves with a clinical history of chronic diarrhea, and 1 heifer with erosions in the buccal cavity and neurologic symptoms were admitted to the Clinic for Ruminants. METHODS This case review included a full clinical examination, a complete blood count, blood chemistry, and measurements of cholesterol and triglycerides. The animals were euthanized and necropsied. A PCR-based direct gene test was applied to determine the APOB genotype. RESULTS All 6 animals were inbred, could be traced back to the sire Maughlin Storm, and were confirmed homozygous for the APOB mutation. The clinical phenotype included poor development, underweight, and intermittent diarrhea in the calves, and neurologic signs in the heifer included hypermetria and pacing. Hypocholesterolemia and low triglycerides concentrations were present in all animals. The pathological phenotype of all animals was steatorrhea with enterocytes of the small intestine containing intracytoplasmic lipid vacuoles. The peripheral nervous system of the heifer displayed degenerative changes. CONCLUSIONS AND CLINICAL IMPORTANCE Suspicion of CD in Holstein cattle is based on the presence of chronic diarrhea with no evidence of primary infections. Confirmation of the associated APOB gene mutation is needed. Additionally, the heifer demonstrated primarily signs of neurologic disease providing an unexpected phenotype of CD.