77 resultados para cell level


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES. The presence of circulating hematopoietic progenitor cells in patients with myeloproliferative diseases (MPD) has been described. However, the exact nature of such progenitor cells has not been specified until now. The aim of this work was to investigate the presence of endothelial precursor cells in the blood of patients with MPD and to assess the role of the endothelial cell lineage in the pathophysiology of this disease. DESIGN AND METHODS. Endothelial progenitor cell marker expression (CD34, prominin (CD133), kinase insert domain receptor (KDR) or vascular endothelial growth factor receptor 2 (VEGFR2), and von Willebrand factor) was assessed in the blood of 53 patients with MPD by quantitative polymerase chain reaction. Clonogenic stem cell assays were performed with progenitor cells and monocytes to assess differentiation towards the endothelial cell lineage. The patients' were divided according to whether they had essential thrombocythemia (ET, n=17), polycythemia vera (PV, n=21) or chronic idiopathic myelofibrosis (CIMF, n=15) and their data compared with data from normal controls (n=16) and patients with secondary thrombo- or erythrocytosis (n=17). RESULTS. Trafficking of CD34-positive cells was increased above the physiological level in 4/17 patients with ET, 5/21 patients with PV and 13/15 patients with CIMF. A subset of patients with CIMF co-expressed the markers CD34, prominin (CD133) and KDR, suggesting the presence of endothelial precursors among the circulating progenitor cells. Clonogenic stem cell assays confirmed differentiation towards both the hematopoietic and the endothelial cell lineage in 5/10 patients with CIMF. Furthermore, the molecular markers trisomy 8 and JAK2 V617F were found in the grown endothelial cells of patients positive for trisomy 8 or JAK2 V617F in the peripheral blood, confirming the common clonal origin of both hematopoietic and endothelial cell lineages. INTERPRETATION AND CONCLUSIONS. Endothelial precursor cells are increased in the blood of a subset of patients with CIMF, and peripheral endothelial cells bear the same molecular markers as hematopoietic cells, suggesting a primary role of pathological endothelial cells in this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoscale drug delivery systems, such as sterically stabilized immunoliposomes binding to internalizing tumor-associated antigens, can increase therapeutic efficacy and reduce toxicity to normal tissues compared with nontargeted liposomes. The epithelial cell adhesion molecule (EpCAM) is of interest as a ligand for targeted drug delivery because it is abundantly expressed in solid tumors but shows limited distribution in normal tissues. To generate EpCAM-specific immunoliposomes for targeted cancer therapy, the humanized single-chain Fv antibody fragment 4D5MOCB was covalently linked to the exterior of coated cationic liposomes. As anticancer agent, we encapsulated the previously described antisense oligonucleotide 4625 specific for both bcl-2 and bcl-xL. The EpCAM-targeted immunoliposomes (SIL25) showed specific binding to EpCAM-overexpressing tumor cells, with a 10- to 20-fold increase in binding compared with nontargeted control liposomes. No enhanced binding was observed on EpCAM-negative control cells. On cell binding, SIL25 was efficiently internalized by receptor-mediated endocytosis, ultimately leading to down-regulation of both bcl-2 and bcl-xL expression on both the mRNA and protein level, which resulted in enhanced tumor cell apoptosis. In combination experiments, the use of SIL25 led to a 2- to 5-fold sensitization of EpCAM-positive tumor cells of diverse origin to death induction by doxorubicin. Our data show the promise of EpCAM-specific drug delivery systems, such as antisense-loaded immunoliposomes, for targeted cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early prenatal diagnosis and in utero therapy of certain fetal diseases have the potential to reduce fetal morbidity and mortality. The intrauterine transplantation of stem cells provides in some instances a therapeutic option before definitive organ failure occurs. Clinical experiences show that certain diseases, such as immune deficiencies or inborn errors of metabolism, can be successfully treated using stem cells derived from bone marrow. However, a remaining problem is the low level of engraftment that can be achieved. Efforts are made in animal models to optimise the graft and study the recipient's microenvironment to increase long-term engraftment levels. Our experiments in mice show similar early homing of allogeneic and xenogeneic stem cells and reasonable early engraftment of allogeneic murine fetal liver cells (17.1% donor cells in peripheral blood 4 weeks after transplantation), whereas xenogeneic HSC are rapidly diminished due to missing self-renewal and low differentiation capacities in the host's microenvironment. Allogeneic murine fetal liver cells have very good long-term engraftment (49.9% donor cells in peripheral blood 16 weeks after transplantation). Compared to the rodents, the sheep model has the advantage of body size and gestation comparable to the human fetus. Here, ultrasound-guided injection techniques significantly decreased fetal loss rates. In contrast to the murine in utero model, the repopulation capacities of allogeneic ovine fetal liver cells are lower (0.112% donor cells in peripheral blood 3 weeks after transplantation). The effect of MHC on engraftment levels seems to be marginal, since no differences could be observed between autologous and allogeneic transplantation (0.117% donor cells vs 0.112% donor cells in peripheral blood 1 to 2 weeks after transplantation). Further research is needed to study optimal timing and graft composition as well as immunological aspects of in utero transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IkappaB kinase (IKK) complex controls processes such as inflammation, immune responses, cell survival and the proliferation of both normal and tumor cells. By activating NFkappaB, the IKK complex contributes to G1/S transition and first evidence has been presented that IKKalpha also regulates entry into mitosis. At what stage IKK is required and whether IKK also contributes to progression through mitosis and cytokinesis, however, has not yet been determined. In this study, we use BMS-345541, a potent allosteric small molecule inhibitor of IKK, to inhibit IKK specifically during G2 and during mitosis. We show that BMS-345541 affects several mitotic cell cycle transitions, including mitotic entry, prometaphase to anaphase progression and cytokinesis. Adding BMS-345541 to the cells released from arrest in S-phase blocked the activation of Aurora A, B and C, Cdk1 activation and histone H3 phosphorylation. Additionally, treatment of the mitotic cells with BMS-345541 resulted in precocious cyclin B1 and securin degradation, defective chromosome separation and improper cytokinesis. BMS-345541 was also found to override the spindle checkpoint in nocodazole-arrested cells. In vitro kinase assays using BMS-345541 indicate that these effects are not primarily due to a direct inhibitory effect of BMS-345541 on mitotic kinases such as Cdk1, Aurora A or B, Plk1 or NEK2. This study points towards a new potential role of IKK in cell cycle progression. Since deregulation of the cell cycle is one of the hallmarks of tumor formation and progression, the newly discovered level of BMS-345541 function could be useful for cell cycle control studies and may provide valuable clues for the design of future therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many mechanisms involved in the pathogenesis of chronic enteropathies or host-pathogen interactions in canine intestine have not been elucidated so far. Next to the clinical and in vivo research tools, an in vitro model of canine intestinal cell culture would be very helpful for studies at the cellular level. Therefore, the purpose of this study was to establish and characterize a primary canine duodenal epithelial cell culture. Neonatal duodenum was disrupted with trypsin-ethylenediaminetetraacetic acid (EDTA) and the mucosa scraped off and digested with collagenase and dispase. After centrifugation on a 2% sorbitol gradient, the cells were incubated at 37 degrees C in OptiMEM supplemented with Primocin, epidermal growth factor, insulin, hydrocortisone, and 10% fetal calf serum (FCS). After 24 h, the FCS concentration was reduced to 2.5%, and the temperature decreased to 33 degrees C. With this method, the cultures were growing to confluent monolayers within 5-6 d and remained viable for an average of 2 wk. Their epithelial nature was confirmed by electron microscopy and immunofluorescence staining using antibodies directed against specific cytokeratins, desmosomes, and tight junctions. The intestinal cells proliferated, as evidenced by immunolabeling with a Ki-67 antibody, and cryptal cell subpopulations could be identified. Furthermore, alkaline phosphatase and sucrase activity were detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM OF THE STUDY: To investigate the characteristics of patients with hepatoblastoma and low serum alpha-fetoprotein (AFP) at diagnosis. PATIENTS AND METHODS: Inclusion of all 21 patients accrued onto SIOPEL trials, whose serum AFP was <100ng/ml at diagnosis. Slides of all 15 patients with available histological material were centrally reviewed. RESULTS: Median age: 10 months. Disease extension at diagnosis: PRETEXT group: II (3 patients), III (10 patients) and IV (8 patients). Extra-hepatic extension: 8 patients. Multifocal tumour: 8 patients. Histology at review: wholly epithelial subtype: 11/15 patients including nine with a small-cell undifferentiated histology. Outcome: only 9 patients achieved a partial response and 16 died. Median survival: 4.4 months. Two-year overall survival: 24% (confidence interval 10-45%). CONCLUSION: This study clearly identifies patients with hepatoblastoma and low serum AFP at diagnosis as a high-risk subgroup with extensive disease at diagnosis, poor response to chemotherapy and a poor outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Surfactant protein D (SP-D) deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D) has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. METHODS: SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. MAIN RESULTS: After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. CONCLUSION: Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are characterized by decreased SP-D levels in the lung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS: Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS: Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer death worldwide. The overall 5-year survival after therapy is about 16% and there is a clear need for better treatment options, such as therapies targeting specific molecular structures. G-protein coupled receptors (GPCRs), as the largest family of cell surface receptors, represent an important group of potential targets for diagnostics and therapy. We therefore used laser capture microdissection and GPCR-focused Affymetrix microarrays to examine the expression of 929 GPCR transcripts in tissue samples of 10 patients with squamous cell carcinoma and 7 with adenocarcinoma in order to identify novel targets in non-small cell lung carcinoma (NSCLC). The relative gene expression levels were calculated in tumour samples compared to samples of the neighbouring alveolar tissue in every patient. Based on this unique study design, we identified 5 significantly overexpressed GPCRs in squamous cell carcinoma, in the following decreasing order of expression: GPR87 > CMKOR1 > FZD10 > LGR4 > P2RY11. All are non-olfactory and GRAFS (glutamate, rhodopsin, adhesion, frizzled/taste2, secretin family) classified. GPR87, LGR4 and CMKOR1 are orphan receptors. GPR87 stands out as a candidate for further target validation due to its marked overexpression and correlation on a mutation-based level to squamous cell carcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In recent years, treatment options for human immunodeficiency virus type 1 (HIV-1) infection have changed from nonboosted protease inhibitors (PIs) to nonnucleoside reverse-transcriptase inhibitors (NNRTIs) and boosted PI-based antiretroviral drug regimens, but the impact on immunological recovery remains uncertain. METHODS: During January 1996 through December 2004 [corrected] all patients in the Swiss HIV Cohort were included if they received the first combination antiretroviral therapy (cART) and had known baseline CD4(+) T cell counts and HIV-1 RNA values (n = 3293). For follow-up, we used the Swiss HIV Cohort Study database update of May 2007 [corrected] The mean (+/-SD) duration of follow-up was 26.8 +/- 20.5 months. The follow-up time was limited to the duration of the first cART. CD4(+) T cell recovery was analyzed in 3 different treatment groups: nonboosted PI, NNRTI, or boosted PI. The end point was the absolute increase of CD4(+) T cell count in the 3 treatment groups after the initiation of cART. RESULTS: Two thousand five hundred ninety individuals (78.7%) initiated a nonboosted-PI regimen, 452 (13.7%) initiated an NNRTI regimen, and 251 (7.6%) initiated a boosted-PI regimen. Absolute CD4(+) T cell count increases at 48 months were as follows: in the nonboosted-PI group, from 210 to 520 cells/muL; in the NNRTI group, from 220 to 475 cells/muL; and in the boosted-PI group, from 168 to 511 cells/muL. In a multivariate analysis, the treatment group did not affect the response of CD4(+) T cells; however, increased age, pretreatment with nucleoside reverse-transcriptase inhibitors, serological tests positive for hepatitis C virus, Centers for Disease Control and Prevention stage C infection, lower baseline CD4(+) T cell count, and lower baseline HIV-1 RNA level were risk factors for smaller increases in CD4(+) T cell count. CONCLUSION: CD4(+) T cell recovery was similar in patients receiving nonboosted PI-, NNRTI-, and boosted PI-based cART.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MicroRNAs (miRNA) are negative regulators of gene expression at the posttranscriptional level, which are involved in tumorigenesis. Two miRNAs, miR-15a and miR-16, which are located at chromosome 13q14, have been implicated in cell cycle control and apoptosis, but little information is available about their role in solid tumors. To address this question, we established a protocol to quantify miRNAs from laser capture microdissected tissues. Here, we show that miR-15a/miR-16 are frequently deleted or down-regulated in squamous cell carcinomas and adenocarcinomas of the lung. In these tumors, expression of miR-15a/miR-16 inversely correlates with the expression of cyclin D1. In non-small cell lung cancer (NSCLC) cell lines, cyclins D1, D2, and E1 are directly regulated by physiologic concentrations of miR-15a/miR-16. Consistent with these results, overexpression of these miRNAs induces cell cycle arrest in G(1)-G(0). Interestingly, H2009 cells lacking Rb are resistant to miR-15a/miR-16-induced cell cycle arrest, whereas reintroduction of functional Rb resensitizes these cells to miRNA activity. In contrast, down-regulation of Rb in A549 cells by RNA interference confers resistance to these miRNAs. Thus, cell cycle arrest induced by these miRNAs depends on the expression of Rb, confirming that G(1) cyclins are major targets of miR-15a/miR-16 in NSCLC. Our results indicate that miR-15a/miR-16 are implicated in cell cycle control and likely contribute to the tumorigenesis of NSCLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determination of somatic cell count (SCC) is used worldwide in dairy practice to describe the hygienic status of the milk and the udder health of cows. When SCC is tested on a quarter level to detect single quarters with high SCC levels of cows for practical reasons, mostly foremilk samples after prestimulation (i.e. cleaning of the udder) are used. However, SCC is usually different in different milk fractions. Therefore, the goal of this study was the investigation of the use of foremilk samples for the estimation of total quarter SCC. A total of 378 milkings in 19 dairy cows were performed with a special milking device to drain quarter milk separately. Foremilk samples were taken after udder stimulation and before cluster attachment. SCC was measured in foremilk samples and in total quarter milk. Total quarter milk SCC could not be predicted precisely from foremilk SCC measurements. At relatively high foremilk SCC levels (>300 x 10(3) cells/ml) foremilk SCC were higher than total quarter milk. At around (50-300) x 10(3) cells/ml foremilk and total quarter SCC did not differ considerably. Most interestingly, if foremilk SCC was lower than 50 x 10(3) cells/ml the total quarter SCC was higher than foremilk SCC. In addition, individual cows showed dramatic variations in foremilk SCC that were not very well related to total quarter milk SCC. In conclusion, foremilk samples are useful to detect high quarter milk SCC to recognize possibly infected quarters, only if precise cell counts are not required. However, foremilk samples can be deceptive if very low cell numbers are to be detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to current knowledge, sexual development of the apicomplexan parasite Neospora caninum takes place in the canine intestine. However, to date there is no information on the interaction between the parasite and the canine intestinal epithelium, and, next to the clinical and in vivo research tools, an in vitro model comprised of canine intestinal cells infected with N. caninum would be very helpful for investigations at the cellular level. Following the isolation of cells of neonatal canine duodenum and growth of cell cultures to monolayers for 5-6 days, canine intestinal epithelial cells were exposed to cell culture-derived N. caninum tachyzoites and bradyzoites. The host cells remained viable during in vitro culture for an average of 2 wk. During this time span, N. caninum was found to readily adhere to any surface area of these cells, but infection took mostly place at sites where microvilli-like structures were missing, e.g., at the cell periphery, with tachyzoites exhibiting at least 3-4 times increased invasive capacities compared to bradyzoites. Once intracellular, parasites resided within a parasitophorous vacuole, moved toward the vicinity of the nucleus and the more distal portion of the epithelial cells, and proliferated to form vacuoles of not more than 2-4 parasites, which were surrounded by numerous mitochondria. Immunofluorescence staining and TEM of infected cells showed that the expression of cytokeratins and the structural integrity of desmosomes and tight junctions were not notably altered during infection. Furthermore, no changes could be detected in the alkaline phosphatase activities in cell culture supernatants of infected and noninfected cells. Canine duodenal epithelial cell cultures represent a useful tool for future studies on the characteristics of the intestinal phases of N. caninum infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although vascular endothelial growth factor (VEGF) has been described as a potent angiogenic stimulus, its application in therapy remains difficult: blood vessels formed by exposure to VEGF tend to be malformed and leaky. In nature, the principal form of VEGF possesses a binding site for ECM components that maintain it in the immobilized state until released by local cellular enzymatic activity. In this study, we present an engineered variant form of VEGF, alpha2PI1-8-VEGF121, that mimics this concept of matrix-binding and cell-mediated release by local cell-associated enzymatic activity, working in the surgically-relevant biological matrix fibrin. We show that matrix-conjugated alpha2PI1-8-VEGF121 is protected from clearance, contrary to native VEGF121 mixed into fibrin, which was completely released as a passive diffusive burst. Grafting studies on the embryonic chicken chorioallantoic membrane (CAM) and in adult mice were performed to assess and compare the quantity and quality of neovasculature induced in response to fibrin implants formulated with matrix-bound alpha2PI1-8-VEGF121 or native diffusible VEGF121. Our CAM measurements demonstrated that cell-demanded release of alpha2PI1-8-VEGF121 increases the formation of new arterial and venous branches, whereas exposure to passively released wild-type VEGF121 primarily induced chaotic changes within the capillary plexus. Specifically, our analyses at several levels, from endothelial cell morphology and endothelial interactions with periendothelial cells, to vessel branching and network organization, revealed that alpha2PI1-8-VEGF121 induces vessel formation more potently than native VEGF121 and that those vessels possess more normal morphologies at the light microscopic and ultrastructural level. Permeability studies in mice validated that vessels induced by alpha2PI1-8-VEGF121 do not leak. In conclusion, cell-demanded release of engineered VEGF121 from fibrin implants may present a therapeutically safe and practical modality to induce local angiogenesis.