73 resultados para catecholamine depletion
Resumo:
The goal of this study was to investigate the effect of sodium intake on renal tissue oxygenation in humans. To this purpose, we measured renal hemodynamics, renal sodium handling, and renal oxygenation in normotensive (NT) and hypertensive (HT) subjects after 1 week of a high-sodium and 1 week of a low-sodium diet. Renal oxygenation was measured using blood oxygen level-dependent magnetic resonance. Tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* values in the medulla and cortex were calculated, with a low R2* indicating a high tissue oxygenation. Ten male NT (mean age: 26.5+/-7.4 years) and 8 matched HT subjects (mean age: 28.8+/-5.7 years) were studied. Cortical R2* was not different under the 2 conditions of salt intake. Medullary R2* was significantly lower under low sodium than high sodium in both NT and HT subjects (28.1+/-0.8 versus 31.3+/-0.6 s(-1); P<0.05 in NT; and 27.9+/-1.5 versus 30.3+/-0.8 s(-1); P<0.05, in HT), indicating higher medullary oxygenation under low-sodium conditions. In NT subjects, medullary oxygenation was positively correlated with proximal reabsorption of sodium and negatively with absolute distal sodium reabsorption, but not with renal plasma flow. In HT subjects, medullary oxygenation correlated with the 24-hour sodium excretion but not with proximal or with the distal handling of sodium. These data demonstrate that dietary sodium intake influences renal tissue oxygenation, low sodium intake leading to an increased renal medullary oxygenation both in normotensive and young hypertensive subjects.
Resumo:
Background The brain reward circuitry innervated by dopamine is critically disturbed in schizophrenia. This study aims to investigate the role of dopamine-related brain activity during prediction of monetary reward and loss in first episode schizophrenia patients. Methods We measured blood–oxygen-level dependent (BOLD) activity in 10 patients with schizophrenia (SCH) and 12 healthy controls during dopamine depletion with α-methylparatyrosine (AMPT) and during a placebo condition (PLA). Results AMPT reduced the activation of striatal and cortical brain regions in SCH. In SCH vs. controls reduced activation was found in the AMPT condition in several regions during anticipation of reward and loss, including areas of the striatum and frontal cortex. In SCH vs. controls reduced activation of the superior temporal gyrus and posterior cingulate was observed in PLA during anticipation of rewarding stimuli. PLA patients had reduced activation in the ventral striatum, frontal and cingulate cortex in anticipation of loss. The findings of reduced dopamine-related brain activity during AMPT were verified by reduced levels of dopamine in urine, homovanillic-acid in plasma and increased prolactin levels. Conclusions Our results indicate that dopamine depletion affects functioning of the cortico-striatal reward circuitry in SCH. The findings also suggest that neuronal functions associated with dopamine neurotransmission and attribution of salience to reward predicting stimuli are altered in schizophrenia.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, such as RNA metabolism, microRNA biogenesis and DNA repair. However, the precise role of FUS protein remains unclear. Recently, FUS has been linked to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS and that specifically depletes the protein. In order to characterize this cell line, we have performed a whole transcriptome analysis by RNA deep sequencing. Preliminary results show that FUS depletion affects both expression and alternative splicing levels of several RNAs. When FUS is depleted we observed 330 downregulated and 81 upregulated genes. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, to further characterize the FUS-depleted cell line we have performed growth proliferation and survival assays. From these experiments emerge that FUS-depleted cells display growth proliferation alteration. In order to explain this observation, we have tested different hypothesis (e.g. apoptosis, senescence or slow-down growth). We observed that FUS-depleted cells growth slower than controls. Currently, we are looking for putative candidate targets causing this phenotype. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.
Resumo:
In the present article, we analyzed the role of self-control strength and state anxiety in sports performance. We tested the hypothesis that self-control strength and state anxiety interact in predicting sports performance on the basis of two studies, each using a different sports task (Study 1: performance in a basketball free throw task, N = 64; Study 2: performance in a dart task, N = 79). The patterns of results were as expected in both studies: Participants with depleted self-control strength performed worse in the specific tasks as their anxiety increased, whereas there was no significant relation for participants with fully available self-control strength. Furthermore, different degrees of available self-control strength did not predict performance in participants who were low in state anxiety, but did in participants who were high in state anxiety. Thus increasing self-control strength could reduce the negative anxiety effects in sports and improve athletes' performance under pressure.
Resumo:
Objectives: Athletes differ at staying focused on performance and avoiding distraction. Drawing on the strength model of self-control we investigated whether athletes do not only differ inter-individually in their disposition of staying focused and avoiding distraction but also intra-individually in their situational availability of focused attention. Design/method: In the present experiment we hypothesized that basketball players (N = 40) who have sufficient self-control resources will perform relatively better on a computer based decision making task under distraction conditions compared to a group who's self-control resources have been depleted in a prior task requiring self-control. Results: The results are in line with the strength model of self-control by demonstrating that an athlete's capability to focus attention relies on the situational availability of self-control strength. Conclusions: The current results indicate that having sufficient self-control strength in interference rich sport settings is likely to be beneficial for decision making.
Resumo:
In the current study, we consider that optimal sprint start performance requires the self-control of responses. Therefore, start performance should depend on athletes' self-control strength. We assumed that momentary depletion of self-control strength (ego depletion) would either speed up or slow down the initiation of a sprint start, where an initiation that was sped up would carry the increased risk of a false start. Applying a mixed between- (depletion vs. nondepletion) and within- (before vs. after manipulation of depletion) subjects design, we tested the start reaction times of 37 sport students. We found that participants' start reaction times decelerated after finishing a depleting task, whereas it remained constant in the nondepletion condition. These results indicate that sprint start performance can be impaired by unrelated preceding actions that lower momentary self-control strength. We discuss practical implications in terms of optimizing sprint starts and related overall sprint performance.
Resumo:
The present study examines whether social interference (i.e., interference with one’s goal attainment by the bodily presence of others) depletes the limited resource of self-control strength. In an experimental laboratory study (N = 34), half the participants experienced social interference whereas the other half did not experience social interference by two confederates during a dexterity task. Afterwards, we measured participants’ momentary self-control strength applying a Stroop colour-naming task. In line with our prediction, participants’ performance in the Stroop task indicated that social interference reduced self-control strength. We discuss implications for crowding research and crowding in natural settings.
Resumo:
Colors have been found to affect psychological functioning. Empirical evidence suggests that, in test situations, brief perceptions of the color red or even the word "red" printed in black ink prime implicit anxious responses and consequently impair cognitive performance. However, we propose that this red effect depends on people's momentary capacity to exert control over their prepotent responses (i.e., self-control). In three experiments (Ns = 66, 78, and 130), first participants' self-control strength was manipulated. Participants were then primed with the color or word red versus gray prior to completing an arithmetic test or an intelligence test. As expected, self-control strength moderated the red effect. While red had a detrimental effect on performance of participants with depleted self-control strength (ego depletion), it did not affect performance of participants with intact self-control strength. We discuss implications of the present findings within the current debate on the robustness of priming results
Resumo:
It has been repeatedly demonstrated that athletes in a state of ego depletion do not perform up to their capabilities. We assume that autonomous self-control exertion, in contrast to forced self-control exertion, can serve as a buffer against ego depletion effects and can help individuals to show superior performance. In the present study, we applied a between-subjects design to test the assumption that autonomously exerted self-control is less detrimental for subsequent self-control performance in sports than is forced self-control exertion. In a primary self-control task, the level of autonomy was manipulated through specific instructions, resulting in three experimental conditions (autonomy-supportive: n = 19; neutral: n = 19; controlling: n = 19). As a secondary self-control task, participants executed a series of tennis serves under high-pressure conditions, and performance accuracy served as our dependent variable. As expected, a one-way between-groups ANOVA revealed that participants from the autonomy-supportive condition performed significantly better under pressure than did participants from the controlling condition. These results further highlight the importance of autonomy-supportive instructions in order to enable athletes to show superior achievements in high-pressure situations. Practical implications for the coach–athlete relationship are discussed.
Resumo:
Objectives: It has been repeatedly demonstrated that athletes in a state of ego depletion do not perform up to their capabilities in high pressure situations. We assume that momentarily available self-control strength determines whether individuals in high pressure situations can resist distracting stimuli. Design/method: In the present study, we applied a between-subjects design, as 31 experienced basketball players were randomly assigned to a depletion group or a non-depletion group. Participants performed 30 free throws while listening to statements representing worrisome thoughts (as frequently experienced in high pressure situations) over stereo headphones. Participants were instructed to block out these distracting audio messages and focus on the free throws. We postulated that depleted participants would be more likely to be distracted. They were also assumed to perform worse in the free throw task. Results: The results supported our assumption as depleted participants paid more attention to the distracting stimuli. In addition, they displayed worse performance in the free throw task. Conclusions: These results indicate that sufficient levels of self-control strength can serve as a buffer against distracting stimuli under pressure.
Resumo:
In the current study we investigated whether ego depletion negatively affects attention regulation under pressure in sports by assessing participants' dart throwing performance and accompanying gaze behavior. According to the strength model of self-control, the most important aspect of self-control is attention regulation. Because higher levels of state anxiety are associated with impaired attention regulation, we chose a mixed design with ego depletion (yes vs. no) as between-subjects and anxiety level (high vs. low) as within-subjects factor. Participants performed a perceptual-motor task requiring selective attention, namely, dart throwing. In line with our expectations, depleted participants in the high-anxiety condition performed worse and displayed a shorter final fixation on bull's eye, demonstrating that when one's self-control strength is depleted, attention regulation under pressure cannot be maintained. This is the first study that directly supports the general assumption that ego depletion is a major factor in influencing attention regulation under pressure.