47 resultados para carpase recruitment domain containing protein 9


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this report, we describe a short peptide, containing a T helper- and a B-cell epitope, located in the Gag protein of the caprine arthritis encephalitis virus (CAEV). This T-cell epitope is capable of inducing a robust T-cell proliferative response in vaccinated goats with different genetic backgrounds and to provide help for a strong antibody response to the B-cell epitope, indicating that it may function as a universal antigen-carrier for goat vaccines. The primary immune response of goats homozygous for MHC class I and II genes showed an MHC-dependent partitioning in rapid-high and slow-low responses, whereas the memory immune response was strong in both groups, demonstrating that a vaccine based on this immunodominant T helper epitope is capable to overcome genetic differences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and alpha-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inflammation of the subarachnoid and ventricular space contributes to the development of brain damage i.e. cortical necrosis and hippocampal apoptosis in pneumococcal meningitis (PM). Galectin-3 and -9 are known pro-inflammatory mediators and regulators of apoptosis. Here, the gene and protein expression profile for both galectins was assessed in the disease progression of PM. The mRNA of Lgals3 and Lgals9 increased continuously in the cortex and in the hippocampus from 22 h to 44 h after infection. At 44 h after infection, mRNA levels of Lgals9 in the hippocampus were 7-fold and those of Lgals3 were 30-fold higher than in uninfected controls (P<0.01). Galectin-9 protein did not change, but galectin-3 significantly increased in cortex and hippocampus with the duration of PM. Galectin-3 was localized to polymorphonuclear neutrophils, microglia, monocytes and macrophages, suggesting an involvement of galectin-3 in the neuroinflammatory processes leading to brain damage in PM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Inhibition of the signalling function of the human insulin receptor (HIR) is one of the principle mechanisms which induce cellular insulin resistance. It is speculated that serine residues in the insulin receptor beta-subunit are involved in receptor inhibition either as inhibitory phosphorylation sites or as part of receptor domains which bind inhibitory proteins or tyrosine phosphatases. As reported earlier we prepared 16 serine to alanine point mutations of the HIR and found that serine to alanine mutants HIR-994 and HIR-1023/25 showed increased tyrosine autophosphorylation when expressed in human embryonic kidney (HEK) 293 cells. In this study we examined whether these mutant receptors have a different susceptibility to inhibition by serine kinases or an altered tyrosine kinase activity. METHODS: Tyrosine kinase assay and transfection studies. RESULTS: In an in vitro kinase assay using IRS-1 as a substrate we could detect a higher intrinsic tyrosine kinase activity of both receptor constructs. Additionally, a higher capacity to phosphorylate the adapter protein Shc in intact cells was seen. To test the inhibition by serine kinases, the receptor constructs were expressed in HEK 293 cells together with IRS-1 and protein kinase C isoforms beta2 and theta. Phorbol ester stimulation of these cells reduced wild-type receptor autophosphorylation to 58 % or 55 % of the insulin simulated state, respectively. This inhibitory effect was not observed with HIR-994 and HIR-1023/25, although all other tested HIR mutants showed similar inhibition induced by protein kinase C. CONCLUSION/INTERPRETATION: The data suggest that the HIR-domain which contains the serine residues 994 and 1023/25 is important for the inhibitory effect of protein kinase C isoforms beta2 and theta on insulin receptor autophosphorylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CopR of Lactococcus lactis is a copper-responsive repressor involved in copper homoeostasis. It controls the expression of a total of 11 genes, the CopR regulon, in a copper-dependent manner. In the absence of copper, CopR binds to the promoters of the CopR regulon. Copper releases CopR from the promoters, allowing transcription of the downstream genes to proceed. CopR binds through its N-terminal domain to a 'cop box' of consensus TACANNTGTA, which is conserved in Firmicutes. We have solved the NMR solution structure of the N-terminal DNA-binding domain of CopR. The protein fold has a winged helix structure resembling that of the BlaI repressor which regulates antibiotic resistance in Bacillus licheniformis. CopR differs from other copper-responsive repressors, and the present structure represents a novel family of copper regulators, which we propose to call the CopY family.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895–1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is unknown how receptor binding by the paramyxovirus attachment proteins (HN, H, or G) triggers the fusion (F) protein to fuse with the plasma membrane for cell entry. H-proteins of the morbillivirus genus consist of a stalk ectodomain supporting a cuboidal head; physiological oligomers consist of non-covalent dimer-of-dimers. We report here the successful engineering of intermolecular disulfide bonds within the central region (residues 91-115) of the morbillivirus H-stalk; a sub-domain that also encompasses the putative F-contacting section (residues 111-118). Remarkably, several intersubunit crosslinks abrogated membrane fusion, but bioactivity was restored under reducing conditions. This phenotype extended equally to H proteins derived from virulent and attenuated morbillivirus strains and was independent of the nature of the contacted receptor. Our data reveal that the morbillivirus H-stalk domain is composed of four tightly-packed subunits. Upon receptor binding, these subunits structurally rearrange, possibly inducing conformational changes within the central region of the stalk, which, in turn, promote fusion. Given that the fundamental architecture appears conserved among paramyxovirus attachment protein stalk domains, we predict that these motions may act as a universal paramyxovirus F-triggering mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mammalian Ste20 kinase Nck-interacting kinase (NIK) specifically activates the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase module. NIK also binds the SH3 domains of the SH2/SH3 adapter protein Nck. To determine whether Nck functions as an adapter to couple NIK to a receptor tyrosine kinase signaling pathway, we determined whether NIK is activated by Eph receptors (EphR). EphRs constitute the largest family of receptor tyrosine kinases (RTK), and members of this family play important roles in patterning of the nervous and vascular systems. In this report, we show that NIK kinase activity is specifically increased in cells stimulated by two EphRs, EphB1 and EphB2. EphB1 kinase activity and phosphorylation of a juxtamembrane tyrosine (Y594), conserved in all Eph receptors, are both critical for NIK activation by EphB1. Although pY594 in the EphB1R has previously been shown to bind the SH2 domain of Nck, we found that stimulation of EphB1 and EphB2 led predominantly to a complex between NIK/Nck, p62(dok), RasGAP, and an unidentified 145-kDa tyrosine-phosphorylated protein. Tyrosine-phosphorylated p62(dok) most probably binds directly to the SH2 domain of Nck and RasGAP and indirectly to NIK bound to the SH3 domain of Nck. We found that NIK activation is also critical for coupling EphB1R to biological responses that include the activation of integrins and JNK by EphB1. Taken together, these findings support a model in which the recruitment of the Ste20 kinase NIK to phosphotyrosine-containing proteins by Nck is an important proximal step in the signaling cascade downstream of EphRs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Eph family receptor tyrosine kinases signal axonal guidance, neuronal bundling, and angiogenesis; yet the signaling systems that couple these receptors to targeting and cell-cell assembly responses are incompletely defined. Functional links to regulators of cytoskeletal structure are anticipated based on receptor mediated cell-cell aggregation and migratory responses. We used two-hybrid interaction cloning to identify EphB1-interactive proteins. Six independent cDNAs encoding the SH2 domain of the adapter protein, Nck, were recovered in a screen of a murine embryonic library. We mapped the EphB1 subdomain that binds Nck and its Drosophila homologue, DOCK, to the juxtamembrane region. Within this subdomain, Tyr594 was required for Nck binding. In P19 embryonal carcinoma cells, activation of EphB1 (ELK) by its ligand, ephrin-B1/Fc, recruited Nck to native receptor complexes and activated c-Jun kinase (JNK/SAPK). Transient overexpression of mutant EphB1 receptors (Y594F) blocked Nck recruitment to EphB1, attenuated downstream JNK activation, and blocked cell attachment responses. These findings identify Nck as an important intermediary linking EphB1 signaling to JNK.