68 resultados para cardiac ischemia reperfusion
Resumo:
BACKGROUND Lower extremity ischemia-reperfusion injury (IRI)-prolonged ischemia and the subsequent restoration of circulation-may result from thrombotic occlusion, embolism, trauma, or tourniquet application in surgery. The aim of this study was to assess the effect of low-molecular-weight dextran sulfate (DXS) on skeletal muscle IRI. METHODS Rats were subjected to 3 h of ischemia and 2 or 24 h of reperfusion. To induce ischemia the femoral artery was clamped and a tourniquet placed under the maintenance of the venous return. DXS was injected systemically 10 min before reperfusion. Muscle and lung tissue samples were analyzed for deposition of immunoglobulin M (IgM), IgG, C1q, C3b/c, fibrin, and expression of vascular endothelial-cadherin and bradykinin receptors b1 and b2. RESULTS Antibody deposition in reperfused legs was reduced by DXS after 2 h (P < 0.001, IgM and IgG) and 24 h (P < 0.001, IgM), C3b/c deposition was reduced in muscle and lung tissue (P < 0.001), whereas C1q deposition was reduced only in muscle (P < 0.05). DXS reduced fibrin deposits in contralateral legs after 24 h of reperfusion but did not reduce edema in muscle and lung tissue or improve muscle viability. Bradykinin receptor b1 and vascular endothelial-cadherin expression were increased in lung tissue after 24 h of reperfusion in DXS-treated and non-treated rats but bradykinin receptor b2 was not affected by IRI. CONCLUSIONS In contrast to studies in myocardial infarction, DXS did not reduce IRI in this model. Neither edema formation nor viability was improved, whereas deposition of complement and coagulation components was significantly reduced. Our data suggest that skeletal muscle IRI may not be caused by the complement or coagulation alone, but the kinin system may play an important role.
Resumo:
To test the hypothesis that the lectin-like domain of tumor necrosis factor, mimicked by the TIP peptide, can improve lung function after unilateral orthotopic lung isotransplantation. Because of a lack of a specific treatment for ischemia reperfusion-mediated lung injury, accompanied by a disrupted barrier integrity and a dysfunctional alveolar liquid clearance, alternative therapies restoring these parameters after lung transplantation are required.
Resumo:
Morbidity and mortality of myocardial infarction remains significant with resulting left ventricular function presenting as a major determinant of clinical outcome. Protecting the myocardium against ischemia reperfusion injury has become a major therapeutic goal and the identification of key signaling pathways has paved the way for various interventions, but until now with disappointing results. This article describes the recently discovered new role of G-protein-coupled receptor kinase-2 (GRK2), which is known to critically influence the development and progression of heart failure, in acute myocardial injury. This article focuses on potential applications of the GRK2 peptide inhibitor βARKct in ischemic myocardial injury, the use of GRK2 as a biomarker in acute myocardial infarction and discusses the challenges of translating GRK2 inhibition as a cardioprotective strategy to a possible future clinical application.
Resumo:
Intracoronary administration of glycosaminoglycan analogs, including the complement inhibitor dextran sulfate, attenuates myocardial ischemia/reperfusion injury (I/R injury). However, dextran sulfate has a distinct anticoagulatory effect, possibly limiting its use in specific situations in vivo. We therefore developed multimeric tyrosine sulfate (sTyr-PAA), a novel, minimally anticoagulatory, fully synthetic non-carbohydrate-containing polyacrylamide conjugate, for in vivo testing in an acute closed-chest porcine model of acute myocardial infarction.
Resumo:
Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs) of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.
Resumo:
The endothelium, as an organ at the interface between the intra- and extravascular space, actively participates in maintaining an anti-inflammatory and anti-coagulant environment under physiological conditions. Severe humoral as well as cellular rejection responses, which accompany cross-species transplantation of vascularized organs as well as ischemia/reperfusion injury, primarily target the endothelium and disrupt this delicate balance. Activation of pro-inflammatory and pro-coagulant pathways often lead to irreversible injury not only of the endothelial layer but also of the entire graft, with ensuing rejection. This review focuses on strategies targeted at protecting the endothelium from such damaging effects, ranging from genetic manipulation of the donor organ to soluble, as well as membrane-targeted, protective strategies.
Resumo:
Fructose-1,6-bisphosphate (FBP), an endogenous intermediate of glycolysis, protects the brain against ischemia-reperfusion injury. The mechanisms of FBP protection after cerebral ischemia are not well understood. The current study was undertaken to determine whether FBP protects primary neurons against hypoxia and oxidative stress by preserving reduced glutathione (GSH). Cultures of pure cortical neurons were subjected to oxygen deprivation, a donor of nitric oxide and superoxide radicals (3-morpholinosydnonimine), an inhibitor of glutathione synthesis (L-buthionine-sulfoximine) or glutathione reductase (1,3-bis(2-chloroethyl)-1-nitrosourea) in the presence or absence of FBP (3.5 mM). Neuronal viability was determined using an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. FBP protected neurons against hypoxia-reoxygenation and oxidative stress under conditions of compromised GSH metabolism. The efficacy of FBP depended on duration of hypoxia and was associated with higher intracellular GSH concentration, an effect partly mediated via increased glutathione reductase activity.
Resumo:
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.
Resumo:
Complement is an essential part of the innate immune system and plays a crucial role in organ and islet transplantation. Its activation, triggered for example by ischemia/reperfusion (I/R), significantly influences graft survival, and blocking of complement by inhibitors has been shown to attenuate I/R injury. Another player of innate immunity are the dendritic cells (DC), which form an important link between innate and adaptive immunity. DC are relevant in the induction of an immune response as well as in the maintenance of tolerance. Modulation or inhibition of both components, complement and DC, may be crucial to improve the clinical outcome of solid organ as well as islet transplantation. Low molecular weight dextran sulfate (DXS), a well-known complement inhibitor, has been shown to prevent complement-mediated damage of the donor graft endothelium and is thus acting as an endothelial protectant. In this review we will discuss the evidence for this cytoprotective effect of DXS and also highlight recent data which show that DXS inhibits the maturation of human DC. Taken together the available data suggest that DXS may be a useful reagent to prevent the activation of innate immunity, both in solid organ and islet transplantation.
Resumo:
OBJECTIVE: Mitogen-activated protein kinases (MAPKs), including JNK, p38, and ERK1/2, noticeably influence ischemia/reperfusion injury (IRI). The complement inhibitor dextran sulfate (DXS) associates with damaged endothelium denudated of its heparan sulfate proteoglycan (HSPG) layer. Other glycosaminoglycan analogs are known to influence MAPK signaling. Hypothetically therefore, targeted intravascular cytoprotection by DXS may function in part through influencing MAPK activation to reduce IRI-induced damage of the vasculature. METHODS: IRI of the infrarenal aorta of male Wistar rats was induced by 90 minutes clamping followed by 120 minutes reperfusion. DXS (5 mg/mL) or physiologic saline (NaCl controls) was infused locally into the ischemic aortic segment immediately prior to reperfusion. Ninety minutes ischemia-only and heparinase infusion (maximal damage) experiments, as well as native rat aorta, served as controls. Aortas were excised following termination of the experiments for further analysis. RESULTS: DXS significantly inhibited IRI-induced JNK and ERK1/2 activation (P = .043; P =.005) without influencing the p38 pathway (P =.110). Reduced aortic injury, with significant inhibition of apoptosis (P = .032 for DXS vs NaCl), correlated with decreased nuclear factor kappaB translocation within the aortic wall. DXS treatment clearly reduced C1q, C4b/c, C3b/c, and C9 complement deposition, whilst preserving endothelial cell integrity and reducing reperfusion-induced HSPG shedding. Protection was associated with binding of fluorescein labeled DXS to ischemically damaged tissue. CONCLUSIONS: Local application of DXS into ischemic vasculature immediately prior to reperfusion reduces complement deposition and preserves endothelial integrity, partially through modulating activation of MAPKs and may offer a new approach to tackle IRI in vascular surgical procedures. CLINICAL RELEVANCE: The purpose of the present study was to determine the role of dextran sulfate (DXS), a glycosaminoglycan analog and complement inhibitor, in modulating intracellular MAPK signaling pathways, reducing complement activation and ultimately attenuating ischemia/reperfusion injury (IRI) in a rat aortic-clamping model, in part a surrogate model to study the microvasculature. The study shows a role for DXS in ameliorating endothelial injury by reducing IRI-mediated damage and intravascular, local inflammation in the affected aortic segment. DXS may be envisaged as an endothelial protectant in vascular injury, such as occurs during vascular surgical procedures.
Resumo:
BACKGROUND Natural IgM containing anti-Gal antibodies initiates classic pathway complement activation in xenotransplantation. However, in ischemia-reperfusion injury, IgM also induces lectin pathway activation. The present study was therefore focused on lectin pathway as well as interaction of IgM and mannose-binding lectin (MBL) in pig-to-human xenotransplantation models. METHODS Activation of the different complement pathways was assessed by cell enzyme-linked immunosorbent assay using human serum on wild-type (WT) and α-galactosyl transferase knockout (GalTKO)/hCD46-transgenic porcine aortic endothelial cells (PAEC). Colocalization of MBL/MASP2 with IgM, C3b/c, C4b/c, and C6 was investigated by immunofluorescence in vitro on PAEC and ex vivo in pig leg xenoperfusion with human blood. Influence of IgM on MBL binding to PAEC was tested using IgM depleted/repleted and anti-Gal immunoabsorbed serum. RESULTS Activation of all the three complement pathways was observed in vitro as indicated by IgM, C1q, MBL, and factor Bb deposition on WT PAEC. MBL deposition colocalized with MASP2 (Manders' coefficient [3D] r=0.93), C3b/c (r=0.84), C4b/c (r=0.86), and C6 (r=0.80). IgM colocalized with MBL (r=0.87) and MASP2 (r=0.83). Human IgM led to dose-dependently increased deposition of MBL, C3b/c, and C6 on WT PAEC. Colocalization of MBL with IgM (Pearson's coefficient [2D] rp=0.88), C3b/c (rp=0.82), C4b/c (rp=0.63), and C6 (rp=0.81) was also seen in ex vivo xenoperfusion. Significantly reduced MBL deposition and complement activation was observed on GalTKO/hCD46-PAEC. CONCLUSION Colocalization of MBL/MASP2 with IgM and complement suggests that the lectin pathway is activated by human anti-Gal IgM and may play a pathophysiologic role in pig-to-human xenotransplantation.
Resumo:
INTRODUCTION Micro- or macroreplantation is classified depending on the level of amputation, distal or proximal to the wrist. This study was performed to review our experience in macroreplantation of the upper extremity with special attention to technical considerations and outcomes. MATERIALS AND METHODS Between January 1990 and December 2010, 11 patients with a complete amputation of the upper extremity proximal to the wrist were referred for replantations to our department. The patients, one woman and ten men, had a mean age of 43.4 ± 18.2 years (range 19-76 years). There were two elbow, two proximal forearm, four mid-forearm, and three distal forearm amputations. The mechanism of injury was crush in four, crush-avulsion in five and guillotine amputation in two patients. The Chen classification was used to assess the postoperative outcomes. The mean follow-up after macroreplantation was 7.5 ± 6.3 years (range 2-21 years). RESULTS All but one were successfully replanted and regained limb function: Chen I in four cases (36 %), Chen II in three cases (27 %), Chen III in two cases (18 %), and Chen IV in one patient (9 %). We discuss the steps of the macroreplantation technique, the need to minimize ischemic time and the risk of ischemia reperfusion injuries. CONCLUSION Thanks to improvements in technique, the indications for limb preservation after amputation can be expanded. However, because of their rarity, replantations should be performed at specialist replantation centers. LEVEL OF EVIDENCE Level IV.
Resumo:
The use of non-heart-beating donor (NHBD) lungs may help to overcome the shortage of lung grafts in clinical lung transplantation, but warm ischaemia and ischaemia/reperfusion injury (I/R injury) resulting in primary graft dysfunction represent a considerable threat. Thus, better strategies for optimized preservation of lung grafts are urgently needed. Surfactant dysfunction has been shown to contribute to I/R injury, and surfactant replacement therapy is effective in enhancing lung function and structural integrity in related rat models. In the present study we hypothesize that surfactant replacement therapy reduces oedema formation in a pig model of NHBD lung transplantation. Oedema formation was quantified with (SF) and without (non-SF) surfactant replacement therapy in interstitial and alveolar compartments by means of design-based stereology in NHBD lungs 7 h after cardiac arrest, reperfusion and transplantation. A sham-operated group served as control. In both NHBD groups, nearly all animals died within the first hours after transplantation due to right heart failure. Both SF and non-SF developed an interstitial oedema of similar degree, as shown by an increase in septal wall volume and arithmetic mean thickness as well as an increase in the volume of peribron-chovascular connective tissue. Regarding intra-alveolar oedema, no statistically significant difference could be found between SF and non-SF. In conclusion, surfactant replacement therapy cannot prevent poor outcome after prolonged warm ischaemia of 7 h in this model. While the beneficial effects of surfactant replacement therapy have been observed in several experimental and clinical studies related to heart-beating donor lungs and cold ischaemia, it is unlikely that surfactant replacement therapy will overcome the shortage of organs in the context of prolonged warm ischaemia, for example, 7 h. Moreover, our data demonstrate that right heart function and dysfunctions of the pulmonary vascular bed are limiting factors that need to be addressed in NHBD.
Resumo:
BACKGROUND Access to care may be implicated in disparities between men and women in death after acute coronary syndrome, especially among younger adults. We aimed to assess sex-related differences in access to care among patients with premature acute coronary syndrome and to identify clinical and gender-related determinants of access to care. METHODS We studied 1123 patients (18-55 yr) admitted to hospital for acute coronary syndrome and enrolled in the GENESIS-PRAXY cohort study. Outcome measures were door-to-electrocardiography, door-to-needle and door-to-balloon times, as well as proportions of patients undergoing cardiac catheterization, reperfusion or nonprimary percutaneous coronary intervention. We performed univariable and multivariable logistic regression analyses to identify clinical and gender-related determinants of timely procedures and use of invasive procedures. RESULTS Women were less likely than men to receive care within benchmark times for electrocardiography (≤ 10 min: 29% v. 38%, p = 0.02) or fibrinolysis (≤ 30 min: 32% v. 57%, p = 0.01). Women with ST-segment elevation myocardial infarction (MI) were less likely than men to undergo reperfusion therapy (primary percutaneous coronary intervention or fibrinolysis) (83% v. 91%, p = 0.01), and women with non-ST-segment elevation MI or unstable angina were less likely to undergo nonprimary percutaneous coronary intervention (48% v. 66%, p < 0.001). Clinical determinants of poorer access to care included anxiety, increased number of risk factors and absence of chest pain. Gender-related determinants included feminine traits of personality and responsibility for housework. INTERPRETATION Among younger adults with acute coronary syndrome, women and men had different access to care. Moreover, fewer than half of men and women with ST-segment elevation MI received timely primary coronary intervention. Our results also highlight that men and women with no chest pain and those with anxiety, several traditional risk factors and feminine personality traits were at particularly increased risk of poorer access to care.
Resumo:
BACKGROUND Endothelial glycocalyx participates in the maintenance of vascular integrity, and its perturbations cause capillary leakage, loss of vascular responsiveness, and enhanced adhesion of leukocytes and platelets. We hypothesized that marked shedding of the glycocalyx core protein, syndecan-1, occurs in end-stage liver disease (ESLD) and that it increases during orthotopic liver transplantation (OLT). We further evaluated the effects of general anesthesia on glycocalyx shedding and its association with acute kidney injury (AKI) after OLT. PATIENTS AND METHODS Thirty consecutive liver transplant recipients were enrolled in this prospective study. Ten healthy volunteers served as a control. Acute kidney injury was defined by Acute Kidney Injury Network criteria. RESULTS Plasma syndecan-1 was significantly higher in ESLD patients than in healthy volunteers (74.3 ± 59.9 vs 10.7 ± 9.4 ng/mL), and it further increased significantly after reperfusion (74.3 ± 59.9 vs 312.6 ± 114.8 ng/mL). The type of general anesthesia had no significant effect on syndecan-1. Syndecan-1 was significantly higher during the entire study in patients with posttransplant AKI stage 2 or 3 compared to patients with AKI stage 0 or 1. The area under the curve of the receiver operating characteristics curve of syndecane-1 to predict AKI stage 2 or 3 within 48 hours after reperfusion was 0.76 (95% confidence interval, 0.57-0.89, P = 0.005). CONCLUSIONS Patients with ESLD suffer from glycocalyx alterations, and ischemia-reperfusion injury during OLT further exacerbates its damage. Despite a higher incidence of AKI in patients with elevated syndecan-1, it is not helpful to predict de novo AKI. Volatile anesthetics did not attenuate glycocalyx shedding in human OLT.