55 resultados para atropisomerism of drugs
Resumo:
Cytochrome P450 proteins are involved in metabolism of drugs and xenobiotics. In the endoplasmic reticulum a single nicotinamide adenine dinucleotide phosphate (NADPH) P450 oxidoreductase (POR) supplies electrons to all microsomal P450s for catalytic activity. POR is a flavoprotein that contains both flavin mononucleotide and flavin adenine dinucleotide as cofactors and uses NADPH as the source of electrons. We have recently reported a number of POR mutations in the patients with disordered steroidogenesis. In the first report we had described missense mutations (A287P, R457H, V492E, C569Y, and V608F) identified in four patients with defects in steroid production. Each POR variant was produced as recombinant N-27 form of the enzyme in bacteria and as full-length form in yeast. Membranes from bacteria or yeast expressing normal or variant POR were purified and their activities were characterized in cytochrome c and CYP17A1 assays. Later we have published a larger study that described a whole range of POR mutations and characterized the mutants/polymorphisms A115V, T142A, M263V, Y459H, A503V, G539R, L565P, R616X, V631I, and F646del from the sequencing of patient DNA. We also studied POR variants Y181D, P228L, R316W, G413S, and G504R that were available in public databases or published literature. Three-dimensional structure of rat POR is known and we have used this structure to deduce the structure-function correlation of POR mutations in human. The missense mutations found in patients with disordered steroidogenesis are generally in the co-factor binding and functionally important domains of POR and the apparent polymorphisms are found in regions with lesser structural importance. A variation in POR can alter the activity of all microsomal P450s, and therefore, can affect the metabolism of drugs and xenobiotics even when the P450s involved are otherwise normal. It is important to study the genetic and biochemical basis of POR variants in human population to gain information about possible differences in P450 mediated reactions among the individuals carrying a variant or polymorphic form of POR that could impact their metabolism.
Resumo:
Drug-induced respiratory depression is a common side effect of the agents used in anesthesia practice to provide analgesia and sedation. Depression of the ventilatory drive in the spontaneously breathing patient can lead to severe cardiorespiratory events and it is considered a primary cause of morbidity. Reliable predictions of respiratory inhibition in the clinical setting would therefore provide a valuable means to improve the safety of drug delivery. Although multiple studies investigated the regulation of breathing in man both in the presence and absence of ventilatory depressant drugs, a unified description of respiratory pharmacodynamics is not available. This study proposes a mathematical model of human metabolism and cardiorespiratory regulation integrating several isolated physiological and pharmacological aspects of acute drug-induced ventilatory depression into a single theoretical framework. The description of respiratory regulation has a parsimonious yet comprehensive structure with substantial predictive capability. Simulations relative to the synergistic interaction of the hypercarbic and hypoxic respiratory drive and the global effect of drugs on the control of breathing are in good agreement with published experimental data. Besides providing clinically relevant predictions of respiratory depression, the model can also serve as a test bed to investigate issues of drug tolerability and dose finding/control under non-steady-state conditions.
Resumo:
Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 A resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.
Resumo:
PURPOSE: Although critically ill patients usually have various central intravenous (i.v.) lines, numerous drugs have to be infused simultaneously through the same lines. This can result in potentially harmful in-line incompatibility that can cause decreased drug effectiveness or increased microparticle load. To minimize the risk of these medication errors at an anesthesia intensive care unit (ICU), the preparation and administration of continuously infused drugs were standardized and the practicability in daily clinical routine was evaluated. SUMMARY: The concentration and diluent of continuously administered i.v. drugs were standardized. The drugs were grouped according to pH, medical indication, and chemical structure. The ICU staff decided to use multilumen central venous catheters, and each group of drugs was assigned to one lumen. Only drugs that belonged to the same group were infused simultaneously through the same lumen; therefore, intragroup incompatibilities had to be excluded before establishing the new drug administration plan at the ICU. The visual compatibility of 115 clinically reasonable intragroup drug mixtures was investigated. All drug combinations were compatible for six hours except mixtures containing thiopental, which was reassigned to a single-line use. In the following year, the practicability of this drug administration plan was evaluated. No deviations were found in the compliance of the staff prescribing and preparing only standardized concentrations and diluents. Further research to investigate the chemical compatibility of the drugs in these multiple mixtures will follow. CONCLUSION: A project intended to avoid incompatibility among i.v. drugs infused in the intensive care setting included steps to standardize solutions and determine which could be given together.
Resumo:
BACKGROUND: Few data are available on the long-term immunologic response to antiretroviral therapy (ART) in resource-limited settings, where ART is being rapidly scaled up using a public health approach, with a limited repertoire of drugs. OBJECTIVES: To describe immunologic response to ART among ART patients in a network of cohorts from sub-Saharan Africa, Latin America, and Asia. STUDY POPULATION/METHODS: Treatment-naive patients aged 15 and older from 27 treatment programs were eligible. Multilevel, linear mixed models were used to assess associations between predictor variables and CD4 cell count trajectories following ART initiation. RESULTS: Of 29 175 patients initiating ART, 8933 (31%) were excluded due to insufficient follow-up time and early lost to follow-up or death. The remaining 19 967 patients contributed 39 200 person-years on ART and 71 067 CD4 cell count measurements. The median baseline CD4 cell count was 114 cells/microl, with 35% having less than 100 cells/microl. Substantial intersite variation in baseline CD4 cell count was observed (range 61-181 cells/microl). Women had higher median baseline CD4 cell counts than men (121 vs. 104 cells/microl). The median CD4 cell count increased from 114 cells/microl at ART initiation to 230 [interquartile range (IQR) 144-338] at 6 months, 263 (IQR 175-376) at 1 year, 336 (IQR 224-472) at 2 years, 372 (IQR 242-537) at 3 years, 377 (IQR 221-561) at 4 years, and 395 (IQR 240-592) at 5 years. In multivariable models, baseline CD4 cell count was the most important determinant of subsequent CD4 cell count trajectories. CONCLUSION: These data demonstrate robust and sustained CD4 response to ART among patients remaining on therapy. Public health and programmatic interventions leading to earlier HIV diagnosis and initiation of ART could substantially improve patient outcomes in resource-limited settings.
Resumo:
BACKGROUND: Blood-brain barrier (BBB) breakdown is an early event in the pathogenesis of multiple sclerosis (MS). In a previous study we have found a direct stabilization of barrier characteristics after treatment of bovine brain capillary endothelial cells (BCECs) with human recombinant interferon-beta-1a (IFN-beta-1a) in an in vitro BBB model. In the present study we examined the effect of human recombinant IFN-beta-1a on the barrier properties of BCECs derived from four different species including humans to predict treatment efficacy of IFN-beta-1a in MS patients. METHODS: We used primary bovine and porcine BCECs, as well as human and murine BCEC cell lines. We investigated the influence of human recombinant IFN-beta-1a on the paracellular permeability for 3H-inulin and 14C-sucrose across monolayers of bovine, human, and murine BCECs. In addition, the transendothelial electrical resistance (TEER) was determined in in vitro systems applying porcine and murine BCECS. RESULTS: We found a stabilizing effect on the barrier characteristics of BCECs after pretreatment with IFN-beta-1a in all applied in vitro models: addition of IFN-beta-1a resulted in a significant decrease of the paracellular permeability across monolayers of human, bovine, and murine BCECs. Furthermore, the TEER was significantly increased after pretreatment of porcine and murine BCECs with IFN-beta-1a. CONCLUSION: Our data suggest that BBB stabilization by IFN-beta-1a may contribute to its beneficial effects in the treatment of MS. A human in vitro BBB model might be useful as bioassay for testing the treatment efficacy of drugs in MS.
Resumo:
Cholesterol circulating levels are elevated in most of the patients with primary biliary cirrhosis. This review questions whether hypercholesterolaemia represents a cardiovascular risk in primary biliary cirrhosis and whether it should be treated. The published evidence indicates that hypercholesterolaemia in patients with primary biliary cirrhosis should be considered a cardiovascular risk factor only when other factors are present. Ursodeoxycholic acid the standard treatment of primary biliary cirrhosis improves the cholestasis and hereby lowers circulating levels of cholesterol. Primary biliary cirrhosis is not a contraindication to prescribe statins or fibrates to these patients. Interestingly, these two classes of drugs have been shown to improve not only the lipid profile but also the liver tests. In particular fibrates have been found to normalize liver tests in patients responding incompletely to ursodeoxycholic acid. Statins as well as fibrates possess specific anti-inflammatory properties which may be beneficial in primary biliary cirrhosis. In conclusion, hypercholesterolaemia in the absence of other cardiovascular risk factors does not require specific therapeutic intervention in patients with primary biliary cirrhosis. However, statins as well as fibrates seem to have beneficial effects on the primary biliary cirrhosis itself and deserve formal testing within clinical trials.
Resumo:
We identified English-language publications on hypersensitivity reactions to xenobiotics through the PubMed database, using the search terms drug and/or xenobiotic, hypersensitivity reaction, mechanism, and immune mediated. We analyzed articles pertaining to the mechanism and the role of T cells. Immune hypersensitivity reactions to drugs are mediated predominantly by IgE antibodies or T cells. The mechanism of IgE-mediated reactions is well investigated, but the mechanisms of T-cell-mediated drug hypersensitivity are not well understood. The literature describes 2 concepts: the hapten/prohapten concept and the concept of pharmacological interactions of drugs with immune receptors. In T-cell-mediated allergic drug reactions, the specificity of the T-cell receptor that is stimulated by the drug may often be directed to a cross-reactive major histocompatibility complex-peptide compound. Thus, previous contact with the causative drug is not obligatory, and an immune mechanism should be considered as the cause of hypersensitivity, even in reactions that occur on primary exposure. Indeed, immune-mediated reactions to xenobiotics in patients without prior exposure to the agent have been described recently for radiocontrast media and neuromuscular blocking agents. Thus, the "allergenic" potential of a drug under development should be evaluated not only by screening its haptenlike characteristics but also by assessing its direct immunostimulatory potential.
Resumo:
Cellular uptake of di- and tripeptides has been characterized in numerous organisms, and various transporters have been identified. In contrast, structural information on peptide transporters is very sparse. Here, we have cloned, overexpressed, purified, and biochemically characterized DtpD (YbgH) from Escherichia coli, a prokaryotic member of the peptide transporter family. Its homologues in mammals, PEPT1 (SLC15A1) and PEPT2 (SLC15A2), not only transport peptides but also are of relevance for uptake of drugs as they accept a large spectrum of peptidomimetics such as beta-lactam antibiotics, antivirals, peptidase inhibitors, and others as substrates. Uptake experiments indicated that DtpD functions as a canonical peptide transporter and is, therefore, a valid model for structural studies of this family of proteins. Blue native polyacrylamide gel electrophoresis, gel filtration, and transmission electron microscopy of single-DtpD particles suggest that the transporter exists in a monomeric form when solubilized in detergent. Two-dimensional crystallization of DtpD yielded first tubular crystals that allowed the determination of a projection structure at better than 19 A resolution. This structure of DtpD represents the first structural view of a member of the peptide transporter family.
Resumo:
Pathologically elevated body core temperature, measured at the death scene, is an important finding in medico-legal investigation of violent deaths. An abnormally high rectal temperature at any death scene may point to an underlying pathology, the influence of certain drugs or a hidden cerebral traumatism, and death by suffocation which would remain undetected without further medico-legal investigations. Furthermore, hyperthermia and fever, if unrecognized, may result in an erroneous forensic estimation of time since death in the early postmortem period by the "Henssge method." By a retrospective study of 744 cases, the authors demonstrate that hyperthermia is a finding with an incidence of 10% of all cases of violent death. The main causes are: influence of drugs, malignant tumors, cerebral hypoxia as a result of suffocation, infections, and systemic inflammatory disorders. As a consequence it must be stated, that hyperthermia must be excluded in every medico-legal death scene investigation by a correct measurement of body core temperature and a comparison between the cooling rate of the body and the behavior of early postmortem changes, notably livor and rigor mortis.
Resumo:
Ascites and hyponatremia are frequent complications of advanced liver cirrhosis. Over 50 % of cirrhotic patients develop ascites and about one third gets hyponatremic. The development of ascites is due to an increased sodium retention in the kidneys, leading to expansion of extracellular volume and accumulation of fluid in the peritoneum. Hyponatremia is related to an impairment in the renal capacity to eliminate solute-free water that causes water retention that is disproportionate to the sodium retention, thus causing a reduction in serum sodium concentration. The exact pathogenesis of sodium retention is not clear, yet. The main pathogenic factor responsible for hyponatremia is a nonosmotic hypersecretion of vasopressin from the neurohypophysis. There is evidence suggesting that hyponatremia predisposes to hepatic encephalopathy. Impairment in glomerular filtration rate in hepatorenal syndrome is due to renal vasoconstriction. Treatment of ascites consists of potassium sparing diuretics, loop diuretics, and/or paracentesis. The current standard of care of hyponatremia based on fluid restriction is unsatisfactory. Currently, a new family of drugs, known as vaptans, which act by specifically antagonizing the effects of vasopressin on the V2 receptors located in the kidney, is evaluated for their role in the management of hyponatremia. Because data on long-term administration are still incomplete, they cannot be used routinely, yet. Liver transplantation is the treatment of choice for hepatorenal syndrome. As bridge to transplantation long-term administration of intravenous albumin and vasoconstrictors can be used.
Resumo:
The aim of this study was to estimate the hospitalization incidence and the total number of hospital days related to all fractures and osteoporotic fractures in the year 2000 in Switzerland and to compare these with data from other frequent disorders in men and women. The official administrative and medical statistics database of the Swiss Federal Office of Statistics (SFOS) from the year 2000 was used. It covered 81.2% of all registered patient admissions and was considered to be representative of the entire population. We included the ICD-10 codes of 84 diagnoses that were compatible with an underlying osteoporosis and applied the best matching age-specific osteoporosis attribution rates published for the ICD-9 diagnosis codes to the individual ICD-10 codes. To preserve comparability with previously published data from 1992, we grouped the data related to the ICD-10 fracture codes into seven diagnosis pools (fractures of the axial skeleton, fractures of the proximal upper limbs, fractures of the distal upper limbs, fractures of the proximal lower limbs, fractures of the distal lower limbs, multiple fractures, and osteoporosis) and analyzed them separately for women and men by age group. Incidences of hospitalization due to fractures were calculated, and the direct medical costs related to hospitalization were estimated. In addition, we compared the results with those from chronic pulmonary obstructive disease (COPD), stroke, acute myocardial infarction, heart failure, diabetes and breast carcinoma from the same database. In Switzerland during 2000, 62,535 hospitalizations for fractures (35,586 women and 26,949 men) were registered. Fifty-one percent of all fractures in women and 24% in men were considered as osteoporotic. The overall incidences of hospitalization due to fractures were 969 and 768 per 100,000 in women and men, respectively. The hospitalization incidences for fractures of the proximal lower limbs and the axial skeleton increased exponentially after the age of 65 years. The direct medical cost of hospitalization of patients with osteoporosis and/or related fractures was 357 million CHF. Hip fractures accounted for approximately half of these costs in women and men. Among other common diseases in women and men, osteoporosis ranked number 1 in women and number 2 (behind COPD) in men. When compared with data from 1992, the average length of stay had shortened by 8.4 days for women and 4.7 days for men, leading to a decrease of almost 40% in direct medical costs related to acute hospitalizations. This apparent decrease in cost might result from a shift into the ambulatory cost segment, for which the assessment and management tools need to be developed. We conclude that, in 2000, osteoporosis continued to be a heavy burden on the Swiss healthcare system. Lack of awareness of the disease and its consequences prevents widespread use of drugs with anti-fracture efficacy. This limits their potential to reduce costs.
Resumo:
Screening tests for drugs of abuse are regularly used in the clinical routine. These tests identify the targeted substances very differently if tests from different manufacturers are used and sometimes also react positive after the intake of drugs which are not intended to be detected. Therefore, implausible results have to be questioned. A test result can be falsely negative, if a patient has taken a compound which is not detected by the antibody used in the test system. Chromatographic confirmation and screening assays are more laborious to perform and more demanding for the interpretation and are therefore only offered by several specialized clinical laboratories. However, their specificity is excellent and many different compounds can be detected depending on the number of compounds which are part of the mass spectra library used. If the clinical evaluation results in the differential diagnosis of an acute intoxication, screening tests for drugs of abuse can help to identify a single compound or a group of substances. The clinical picture, however, can usually not been explained by a qualitative test result. In addition, there are no published data demonstrating that these tests meaningfully influence triage, treatment, diagnosis or further therapy of a poisoned patient. The quantitative determination of specific compounds in the blood allows for example an appraisal of the prognosis and helps to indicate a specific therapy after intake of acetaminophen or methanol. New designer drugs can not at all be detected by the classic screening tests for drugs of abuse. The have to be identified by chromatographic methods.
Resumo:
Delta-9-tetrahydrocannabinolic acid A (THCA-A) is the biosynthetic precursor of delta-9-tetrahydrocannabinol (THC) in cannabis plants, and has no psychotropic effects. THCA-A can be detected in blood and urine, and several metabolites have been identified. THCA-A was also shown to be incorporated in hair by side stream smoke to a minor extent, but incorporation via blood stream or sweat seems unlikely. The detection of THCA-A in biological fluids may serve as a marker for differentiating between the intake of prescribed THC medication – containing only pure THC – and cannabis products containing THC besides THC-acid A and other cannabinoids. However, the knowledge about its usefulness in forensic cases is very limited. The aim of the present work was the development of a reliable method for THCA-A determination in human blood or plasma using LC–MS/MS and application to cases of driving under the influence of drugs. Fifty eight (58) authentic whole blood and the respective plasma samples were collected from drivers suspected of driving under the influence of cannabis from the region of Bern (Switzerland). Samples were first tested for THC, 11-OH-THC and THC-COOH, and then additionally for THCA-A. For this purpose, the existing LC–MS/MS method was modified and validated, and found to be selective and linear over a range of 1.0 to 200 ng/mL (the correlation coefficients were above 0.9980 in all validation runs). Limit of detection (LOD) and limit of quantification (LOQ) were 0.3 ng/mL and 1.0 ng/mL respectively. Intra- and inter-assay accuracy were equal or better than 90% and intra- and inter-assay precision were equal or better than 11.1%. The mean extraction efficiencies were satisfactory being equal or higher than 85.4%. THCA-A was stable in whole blood samples after 3 freeze/thaw cycles and storage at 4 °C for 7 days. Re-injection (autosampler) stability was also satisfactory. THC was present in all blood samples with levels ranging from 0.7 to 51 ng/mL. THCA-A concentrations ranged from 1.0 to 496 ng/mL in blood samples and from 1.4 to 824 ng/mL in plasma samples. The plasma:blood partition coefficient had a mean value of 1.7 (±0.21, SD). No correlation was found between the degree of intoxication or impairment stated in the police protocols or reports of medical examinations and the detected THCA-A-concentration in blood.
Resumo:
Dexmedetomidine and lignocaine IV are used clinically to provide analgesia in horses. The aims of this study were to investigate the antinociceptive effects, plasma concentrations and sedative effects of 2, 4 and 6 µg/kg/h dexmedetomidine IV, with a bolus of 0.96 µg/kg preceding each continuous rate infusion (CRI), and 20, 40 and 60 µg/kg/min lignocaine IV, with a bolus of 550 µg/kg preceding each CRI, in 10 Swiss Warmblood horses. Electrically elicited nociceptive withdrawal reflexes were evaluated by deltoid muscle electromyography. Nociceptive threshold and tolerance were determined by electromyography and behaviour following single and repeated stimulation. Plasma concentrations of drugs were determined by liquid chromatography and mass spectrometry. Sedation was scored on a visual analogue scale. Dexmedetomidine increased nociceptive threshold to single and repeated stimulation for all CRIs, except at 2 µg/kg/h, where no increase in single stimulation nociceptive threshold was observed. Dexmedetomidine increased nociceptive tolerance to single and repeated stimulation at all CRIs. There was large individual variability in dexmedetomidine plasma concentrations and levels of sedation; the median plasma concentration providing antinociceptive effects to all recorded parameters was 0.15 ng/mL, with a range from <0.02 ng/mL (below the lower limit of quantification) to 0.25 ng/mL. Lignocaine increased nociceptive threshold and tolerance to single and repeated stimulation at CRIs of 40 and 60 µg/kg/min, corresponding to plasma lignocaine concentrations >600 ng/mL. Only nociceptive tolerance to repeated stimulation increased at 20 µg/kg/min lignocaine. Lignocaine at 40 µg/kg/min and dexmedetomidine at 4 µg/kg/h were the lowest CRIs resulting in consistent antinociception. Lignocaine did not induce significant sedation.