57 resultados para alkaline phosphatase activity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND:: Sometimes, a temporary increase in alkaline phosphatase level is found in healthy infants and toddlers without evidence of liver or bone disease. The condition is customarily termed transient benign hyperphosphatasemia of infancy and early childhood. Most textbooks do not refer to the condition. METHODS:: We completed a systematic review of the literature using the principles underlying the UK Economic and Social Research Council guidance on the conduct of narrative synthesis and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. RESULTS:: The 142 reports retained for analysis included 813 cases (male:female ratio = 1.1:1.0): 80 in subjects >18 years and 733 in subjects ≤18 years of age. The alkaline phosphatase ratio, calculated by dividing the measured level by the upper normal limit, was ≥5.0 in ≈70% and the duration of the elevation ≤4 months in 80% of the cases. Transient benign hyperphosphatasemia often followed a benign infection but available data fail to demonstrate a causal link. The prevalence of transient benign hyperphosphatasemia ranged 1.1-3.5% in infants 2 to 24 months of age. CONCLUSIONS:: Transient benign hyperphosphatasemia is likely the most common cause of hyperphosphatasemia among healthy infants and toddlers. Sometimes, it also occurs in older children and adults, indicating that the traditional term transient benign hyperphosphatasemia of infancy and early childhood might not be correct. The elevation in alkaline phosphatase persists for >4 months in ≈20% of the cases. Recognition of this benign condition is crucial to avoid unnecessary investigations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Many osteoporosis patients have low 25-hydroxyvitamin D (25OHD) and do not take recommended vitamin D amounts. A single tablet containing both cholecalciferol (vitamin D3) and alendronate would improve vitamin D status concurrently, with a drug shown to reduce fracture risk. This study assessed the efficacy, safety, and tolerability of a once-weekly tablet containing alendronate 70 mg and cholecalciferol 70 microg (2800 IU) (ALN + D) versus alendronate 70 mg alone (ALN). METHODS: This 15-week, randomized, double-blind, multi-center, active-controlled study was conducted during a season when 25OHD levels are declining, and patients were required to avoid sunlight and vitamin D supplements for the duration of the study. Men (n = 35) and postmenopausal women (n = 682) with osteoporosis and 25OHD >or= 9 ng/mL were randomized to ALN + D (n = 360) or ALN (n = 357). MAIN OUTCOME MEASURES: Serum 25OHD, parathyroid hormone, bone-specific alkaline phosphatase (BSAP), and urinary N-telopeptide collagen cross-links (NTX). RESULTS: Serum 25OHD declined from 22.2 to 18.6 ng/mL with ALN (adjusted mean change = -3.4; 95% confidence interval [CI]: -4.0 to -2.8), and increased from 22.1 to 23.1 ng/mL with ALN + D (adjusted mean change = 1.2; 95% CI: 0.6 to 1.8). At 15 weeks, adjusted mean 25OHD was 26% higher (p < 0.001, ALN + D versus ALN), the adjusted relative risk (RR) of 25OHD < 15 ng/mL (primary endpoint) was reduced by 64% (incidence 11% vs. 32%; RR = 0.36; 95% CI: 0.27 to 0.48 [p < 0.001]), and the RR of 25OHD < 9 ng/mL (a secondary endpoint) was reduced by 91% (1% vs. 13%; RR = 0.09; 95% CI: 0.03 to 0.23 [p < 0.001]). Antiresorptive efficacy was unaltered, as measured by reduction in bone turnover (BSAP and NTX). CONCLUSION: In osteoporosis patients who avoided sunlight and vitamin D supplements, this once-weekly tablet containing alendronate and cholecalciferol provided equivalent antiresorptive efficacy, reduced the risk of low serum 25OHD, improved vitamin D status over 15 weeks, and was not associated with hypercalcemia, hypercalciuria or other adverse findings, versus alendronate alone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The organic material of our teeth consists of collagens and a number of calcium-binding phosphoproteins. Six of these phosphoproteins have recently been grouped in the family of the SIBLINGs (small integrin-binding ligand, N-linked glycoproteins), namely osteopontin, bone sialoprotein, dentin matrix protein (DMP1), dentin sialophosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE) and enamelin. We prepared a cDNA library from rat incisors in order to identify the genes involved in tooth formation. The library was screened by subtractive hybridization with two probes; one specific for teeth, the other for bone. We found that the vast majority of the clones from our library were expressed at similar levels in bone and teeth, demonstrating the close relationship of the two tissues. Only 7% of all the clones were expressed in a tooth-specific fashion. These included clones for the enamel proteins; amelotin, amelogenin, ameloblastin and enamelin; for the dentin proteins DSPP and DMP1; and for the intermediate filament protein cytokeratin 13. Several typical bone proteins, including collagen I, osteocalcin, alkaline phosphatase and FATSO, were also expressed at significantly higher levels in teeth than in bone, probably due to the extreme growth rate of rat incisors. The amino acid sequence of rat amelotin showed 62% identity with the sequence from humans. It was expressed considerably later than the other enamel proteins, suggesting that amelotin may serve a function different from those of amelogenin, ameloblastin and enamelin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Heterotopic ossification (HO) is a pathological bone formation process in which ectopic bone is formed in soft tissue. The formation of bone depends on the expression of the osteoblast phenotype. Earlier studies have shown conflicting results on the expression of phenotype markers of cells originating from HO and normal bone. The hypothesis of the present study is that cells from HO show an altered expression of osteoblast-specific phenotype markers compared to normal osteoblasts. The aims of the study were to further characterize the expression of osteoblast phenotypemarkers and to provide a comparison with other study results. PATIENTS AND METHODS: Using an in vitro technique, reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and immunohistochemistry, we compared the phenotype gene expression (type I collagen, alkaline phosphatase, Cbfa-1, osteocalcin) of osteoblasts from resected HO and normal bone (iliac crest). RESULTS: Cells from HO expressed the osteoblast phenotype (type I collagen, alkaline phosphatase) but were characterized by a depleted osteocalcin expression. The expression of Cbfa-1 (osteocalcin transcription gene) showed a large variety in our study. Preoperative radiotherapy had no effect on phenotype expression in cells from HO. CONCLUSION: Our results provide a characterization of cells originating from HO and support the thesis of an impaired osteoblast differentiation underlying the formation of HO. The transcription axis from Cbfa-1 to osteocalcin could be involved in the pathogenesis of HO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A five-year-old, entire, male dachshund was presented with a five day history of hypersalivation and regurgitation as well as polyuria and polydipsia for several months. Chest radiographs demonstrated megaoesophagus and aspiration pneumonia. Furthermore, hyperadrenocorticism was demonstrated by means of elevations in levels of serum alkaline phosphatase and cholesterol, decreased urinary specific gravity, increased response to adrenocorticotropic hormone stimulation, insufficient suppression of the post-dexamethasone plasma cortisol levels, an increased endogenous adrenocorticotropic hormone concentration and bilaterally enlarged adrenal glands on abdominal ultrasound. The dog became severely dyspnoeic and was euthanased after magnetic resonance imaging was performed. The magnetic resonance imaging and necropsy revealed the sellar region mainly filled with fluid, with only small tissue remnants, a condition defined as empty sella syndrome in human medicine. To the author's knowledge, this is the first dog described with empty sella syndrome and only the second dog described with hyperadrenocorticism secondary to ectopic adrenocorticotropic hormone production. However, the association between empty sella syndrome and hyperadrenocorticism may be no more than incidental.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue engineering (TE) has emerged as a promising new therapy for the treatment of damaged tissues and organs. Adult stem cells are considered as an attractive candidate cell type for cell-based TE. Mesenchymal stem cells (MSC) have been isolated from a variety of tissues and tested for differentiation into different cell lineages. While clinical trials still await the use of human MSC, horse tendon injuries are already being treated with autologous bone marrow-derived MSC. Given that the bone marrow is not an optimal source for MSC due to the painful and risk-containing sampling procedure, isolation of stem cells from peripheral blood would bring an attractive alternative. Adherent fibroblast-like cells have been previously isolated from equine peripheral blood. However, their responses to the differentiation conditions, established for human bone marrow MSC, were insufficient to fully confirm their multilineage potential. In this study, differentiation conditions were optimized to better evaluate the multilineage capacities of equine peripheral blood-derived fibroblast-like cells (ePB-FLC) into adipogenic, osteogenic, and chondrogenic pathways. Adipogenic differentiation using rabbit serum resulted in a high number of large-size lipid droplets three days upon induction. Cells' expression of alkaline phosphatase and calcium deposition upon osteogenic induction confirmed their osteogenic differentiation capacities. Moreover, an increase of dexamethasone concentration resulted in faster osteogenic differentiation and matrix mineralization. Finally, induction of chondrogenesis in pellet cultures resulted in an increase in cartilage-specific gene expression, namely collagen II and aggrecan, followed by protein deposition after a longer induction period. This study therefore demonstrates that ePB-FLC have the potential to differentiate into adipogenic, osteogenic, and chondrogenic mesenchymal lineages. The presence of cells with confirmed multilineage capacities in peripheral blood has important clinical implications for cell-based TE therapies in horses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Cystic fibrosis (CF) is characterized by chronic bacterial broncho-pulmonary infection. Although intravenous (IV) antibiotic therapy is regarded as standard treatment in CF, only few randomised trials comparing different antibiotic compounds exist. METHODS: We report on a prospective multicenter interventional trial of IV meropenem (120 mg/kg/day) or IV ceftazidime (200-400 mg/kg/day), each administered together with IV tobramycin (9-12 mg/kg/day). Outcome measures were changes in lung function, microbiological sputum burden and blood inflammatory marker. Liver and renal function values were measured to assess safety. RESULTS: One hundred eighteen patients (59/59) were included into the study with the following indications: first infection of P. aeruginosa (n=6), acute pulmonary exacerbation (n=34) and suppression therapy of chronic P. aeruginosa colonization (n=78). Both treatments improved lung function measures, bacterial sputum burden and CRP levels with no differences between treatment groups observed. A significant higher elevation for alkaline phosphatase (p<0.0001) was observed for patients in the meropenem/tobramycin group. CONCLUSIONS: IV antibiotic therapy in CF patients with meropenem/tobramycin is as effective as with ceftazidime/tobramycin regarding lung function, microbiological sputum burden and systemic inflammatory status. Hepato-biliary function should be monitored carefully during IV treatment, possibly important in CF patients with pre-existing liver disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new technique was evaluated to identify changes in bone metabolism directly at high sensitivity through isotopic labeling of bone Ca. Six women with low BMD were labeled with 41Ca up to 700 days and treated for 6 mo with risedronate. Effect of treatment on bone could be identified using 41Ca after 4-8 wk in each individual. INTRODUCTION: Isotopic labeling of bone using 41Ca, a long-living radiotracer, has been proposed as an alternative approach for measuring changes in bone metabolism to overcome current limitations of available techniques. After isotopic labeling of bone, changes in urinary 41Ca excretion reflect changes in bone Ca balance. The aim of this study was to validate this new technique against established measures. Changes in bone Ca balance were induced by giving a bisphosphonate. MATERIALS AND METHODS: Six postmenopausal women with diagnosed osteopenia/osteoporosis received a single oral dose of 100 nCi 41Ca for skeleton labeling. Urinary 41Ca/40Ca isotope ratios were monitored by accelerator mass spectrometry up to 700 days after the labeling process. Subjects received 35 mg risedronate per week for 6 mo. Effect of treatment was monitored using the 41Ca signal in urine and parallel measurements of BMD by DXA and biochemical markers of bone metabolism in urine and blood. RESULTS: Positive response to treatment was confirmed by BMD measurements, which increased for spine by +3.0% (p = 0.01) but not for hip. Bone formation markers decreased by -36% for bone alkaline phosphatase (BALP; p = 0.002) and -59% for procollagen type I propeptides (PINP; p = 0.001). Urinary deoxypyridinoline (DPD) and pyridinoline (PYD) were reduced by -21% (p = 0.019) and -23% (p = 0.009), respectively, whereas serum and urinary carboxy-terminal teleopeptides (CTXs) were reduced by -60% (p = 0.001) and -57.0% (p = 0.001), respectively. Changes in urinary 41Ca excretion paralleled findings for conventional techniques. The urinary 41Ca/40Ca isotope ratio was shifted by -47 +/- 10% by the intervention. Population pharmacokinetic analysis (NONMEM) of the 41Ca data using a linear three-compartment model showed that bisphosphonate treatment reduced Ca transfer rates between the slowly exchanging compartment (bone) and the intermediate fast exchanging compartment by 56% (95% CI: 45-58%). CONCLUSIONS: Isotopic labeling of bone using 41Ca can facilitate human trials in bone research by shortening of intervention periods, lowering subject numbers, and having easier conduct of cross-over studies compared with conventional techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Psoriasis is a chronic immune-mediated skin disease, in which interleukins 12 and 23 have been postulated to play a critical role. However, the cellular source of these cytokines in psoriatic lesions are still poorly defined and their relative contribution in inducing skin inflammation has been discussed controversially. OBJECTIVES: To investigate immunoreactivity of the bioactive forms of IL-12 and IL-23 in plaque psoriasis and to characterize the dendritic cell (DC) and macrophage subsets responsible for the production of these cytokines. METHODS: Immunohistochemistry was performed on normal skin (n=11) as well as non-lesional (n=11) and lesional (n=11) skin of patients with plaque psoriasis using monoclonal antibodies targeting the bioactive forms of IL-12 (IL-12p70) and IL-23 (IL-23p19/p40) on serial cryostat sections using the alkaline phosphatase-antialkaline phosphatase. Co-localization of IL-12 and IL-23 with different dendritic cells and macrophage cell markers (CD1a, CD11c, CD14, CD32, CD68, CD163, CD208/DC-LAMP) was performed using double immunofluorescence staining. RESULTS: Immunoreactivity for IL-12 and IL-23 was significantly enhanced in lesional psoriatic skin as compared to non-lesional and normal skin. No difference was observed between IL-12 and IL-23 immunoreactivity in any skin types. Both IL-12 and IL-23 immunoreactivity was readily detected mainly in CD11c+, CD14+, CD32+, CD68+ and some CD163+, DC-LAMP+ cells. IL-12 and occasionally IL-23 were also found in some CD1a+ dendritic cells. In addition, an enhanced expression mainly of IL-23 was observed in keratinocytes. CONCLUSIONS: Bioactive forms of IL-12 and IL-23 are highly expressed in various DC and macrophage subsets and their marked in situ production suggest that both cytokines have crucial pathogenic role in psoriasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To study the time course of demineralization and fracture incidence after spinal cord injury (SCI), 100 paraplegic men with complete motor loss were investigated in a cross-sectional study 3 months to 30 years after their traumatic SCI. Fracture history was assessed and verified using patients' files and X-rays. BMD of the lumbar spine (LS), femoral neck (FN), distal forearm (ultradistal part = UDR, 1/3 distal part = 1/3R), distal tibial diaphysis (TDIA), and distal tibial epiphysis (TEPI) was measured using DXA. Stiffness of the calcaneus (QUI.CALC), speed of sound of the tibia (SOS.TIB), and amplitude-dependent SOS across the proximal phalanges (adSOS.PHAL) were measured using QUS. Z-Scores of BMD and quantitative ultrasound (QUS) were plotted against time-since-injury and compared among four groups of paraplegics stratified according to time-since-injury (<1 year, stratum I; 1-9 years, stratum II; 10-19 years, stratum III; 20-29 years, stratum IV). Biochemical markers of bone turnover (deoxypyridinoline/creatinine (D-pyr/Cr), osteocalcin, alkaline phosphatase) and the main parameters of calcium phosphate metabolism were measured. Fifteen out of 98 paraplegics had sustained a total of 39 fragility fractures within 1,010 years of observation. All recorded fractures were fractures of the lower limbs, mean time to first fracture being 8.9 +/- 1.4 years. Fracture incidence increased with time-after-SCI, from 1% in the first 12 months to 4.6%/year in paraplegics since >20 years ( p<.01). The overall fracture incidence was 2.2%/year. Compared with nonfractured paraplegics, those with a fracture history had been injured for a longer time ( p<.01). Furthermore, they had lower Z-scores at FN, TEPI, and TDIA ( p<.01 to <.0001), the largest difference being observed at TDIA, compared with the nonfractured. At the lower limbs, BMD decreased with time at all sites ( r=.49 to.78, all p<.0001). At FN and TEPI, bone loss followed a log curve which leveled off between 1 to 3 years after injury. In contrast, Z-scores of TDIA continuously decreased even beyond 10 years after injury. LS BMD Z-score increased with time-since-SCI ( p<.05). Similarly to DXA, QUS allowed differentiation of early and rapid trabecular bone loss (QUI.CALC) vs slow and continuous cortical bone loss (SOS.TIB). Biochemical markers reflected a disproportion between highly elevated bone resorption and almost normal bone formation early after injury. Turnover declined following a log curve with time-after-SCI, however, D-pyr/Cr remained elevated in 30% of paraplegics injured >10 years. In paraplegic men early (trabecular) and persistent (cortical) bone loss occurs at the lower limbs and leads to an increasing fracture incidence with time-after-SCI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent studies have indicated that parathyroid hormone-related protein (PTHrP) may have important actions in lactation, affecting the mammary gland, and also calcium metabolism in the newborn and the mother. However, there are as yet no longitudinal studies to support the notion of an endocrine role of this peptide during nursing. We studied a group of 12 nursing mothers, mean age 32 years, after they had been nursing for an average of 7 weeks (B) and also 4 months after stopping nursing (A). It was assumed that changes occurring between A and B correspond to the effect of lactation. Blood was assayed for prolactin (PRL), PTHrP (two-site immunoradiometric assay with sheep antibody against PTHrP(1-40), and goat antibody against PTHrP(60-72), detection limit 0.3 pmol/l), intact PTH (iPTH), ionized calcium (Ca2+), 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), alkaline phosphatase (alkP), as well as for creatinine (Cr), protein, phosphorus (P), and total calcium (Ca). Fasting 2-h urine samples were analyzed for Ca excretion (CaE) and renal phosphate threshold (TmP/GFR). PRL was significantly higher during lactation than after weaning (39 +/- 10 vs. 13 +/- 9 micrograms/l; p = 0.018) and so was PTHrP (2.8 +/- 0.35 vs. 0.52 +/- 0.04 pmol/l; p = 0.002), values during lactation being above the normal limit (1.3 pmol/l) in all 12 mothers. There was a significant correlation between PRL and PTHrP during lactation (r = 0.8, p = 0.002). Whole blood Ca2+ did not significantly change from A (1.20 +/- 0.02 mmol/l) to B (1.22 +/- 0.02, mmol/l), whereas total Ca corrected for protein (2.18 +/- 0.02 mmol/l) or uncorrected (2.18 +/- 0.02 mmol/l) significantly rose during lactation (2.31 +/- 0.02 mmol/l, p = 0.003 and 2.37 +/- 0.03 mmol/l, p = 0.002, respectively). Conversely, iPTH decreased during lactation (3.47 +/- 0.38 vs. 2.11 +/- 0.35 pmol/l, A vs. B, p = 0.02). Serum-levels of 25(OH)D3 and 1,25(OH)2D3 did not significantly change from A to B (23 +/- 2.3 vs. 24 +/- 1.9 ng/ml and 29.5 +/- 6.0 vs. 21.9 +/- 1.8 pg/ml, respectively). Both TmP/GFR and P were higher during lactation than after weaning (1.15 +/- 0.03 vs. 0.86 +/- 0.05 mmol/l GF, p = 0.003 and 1.25 +/- 0.03 vs. 0.96 +/- 0.05 mmol/l, p = 0.002, respectively) as was alkP (74.0 +/- 7.1 vs. 52.6 +/- 6.9 U/l, p = 0.003). CaE did not differ between A and B (0.015 +/- 0.003 vs. 0.017 +/- 0.003 mmol/l GF, A vs. B, NS). We conclude that lactation is accompanied by an increase in serum PRL. This is associated with a release of PTHrP into the maternal blood circulation. A rise in total plasma Ca ensues, probably in part by increased bone turnover as suggested by the elevation of alkP. PTH secretion falls, with a subsequent rise of TmP/GFR and plasma P despite high plasma levels of PTHrP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

According to current knowledge, sexual development of the apicomplexan parasite Neospora caninum takes place in the canine intestine. However, to date there is no information on the interaction between the parasite and the canine intestinal epithelium, and, next to the clinical and in vivo research tools, an in vitro model comprised of canine intestinal cells infected with N. caninum would be very helpful for investigations at the cellular level. Following the isolation of cells of neonatal canine duodenum and growth of cell cultures to monolayers for 5-6 days, canine intestinal epithelial cells were exposed to cell culture-derived N. caninum tachyzoites and bradyzoites. The host cells remained viable during in vitro culture for an average of 2 wk. During this time span, N. caninum was found to readily adhere to any surface area of these cells, but infection took mostly place at sites where microvilli-like structures were missing, e.g., at the cell periphery, with tachyzoites exhibiting at least 3-4 times increased invasive capacities compared to bradyzoites. Once intracellular, parasites resided within a parasitophorous vacuole, moved toward the vicinity of the nucleus and the more distal portion of the epithelial cells, and proliferated to form vacuoles of not more than 2-4 parasites, which were surrounded by numerous mitochondria. Immunofluorescence staining and TEM of infected cells showed that the expression of cytokeratins and the structural integrity of desmosomes and tight junctions were not notably altered during infection. Furthermore, no changes could be detected in the alkaline phosphatase activities in cell culture supernatants of infected and noninfected cells. Canine duodenal epithelial cell cultures represent a useful tool for future studies on the characteristics of the intestinal phases of N. caninum infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Preclinical and clinical studies suggest that a combination of enamel matrix derivative (EMD) with demineralized freeze-dried bone allograft (DFDBA) may improve periodontal wound healing and regeneration. To date, no single study has characterized the effects of this combination on in vitro cell behavior. The aim of this study is to test the ability of EMD to adsorb to the surface of DFDBA particles and determine the effect of EMD coating on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. METHODS DFDBA particles were precoated with EMD or human blood and analyzed for protein adsorption patterns via scanning electron microscopy. Cell attachment and proliferation were quantified using a commercial assay. Cell differentiation was analyzed using real-time polymerase chain reaction for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen 1α1, and mineralization was assessed using alizarinred staining. RESULTS Analysis of cell attachment revealed no significant differences among control, blood-coated, and EMD-coated DFDBA particles. EMD significantly increased cell proliferation at 3 and 5 days after seeding for both osteoblasts and PDL cells compared to control and blood-coated samples. Moreover, there were significantly higher messenger ribonucleic acid levels of osteogenic differentiation markers, including collagen 1α1, alkaline phosphatase, and osteocalcin, in osteoblasts and PDL cells cultured on EMD-coated DFDBA particles at 3, 7, and 14 days. CONCLUSION The results suggest that the addition of EMD to DFDBA particles may influence periodontal regeneration by stimulating PDL cell and osteoblast proliferation and differentiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES The application of an enamel matrix derivative (EMD) for regenerative periodontal surgery has been shown to promote formation of new cementum, periodontal ligament, and alveolar bone. In intrabony defects with a complicated anatomy, the combination of EMD with various bone grafting materials has resulted in additional clinical improvements, but the initial cellular response of osteoblasts coming in contact with these particles have not yet been fully elucidated. The objective of the present study was to evaluate the in vitro effects of EMD combined with a natural bone mineral (NBM) on a wide variety of genes, cytokines, and transcription factors and extracellular matrix proteins on primary human osteoblasts. MATERIAL AND METHODS Primary human osteoblasts were seeded on NBM particles pre-coated with versus without EMD and analyzed for gene differences using a human osteogenesis gene super-array (Applied Biosystems). Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules. RESULTS EMD promoted gene expression of various osteoblast differentiation markers including a number of collagen types and isoforms, SMAD intracellular proteins, osteopontin, cadherin, alkaline phosphatase, and bone sialoprotein. EMD also upregulated a variety of growth factors including bone morphogenetic proteins, vascular endothelial growth factors, insulin-like growth factor, transforming growth factor, and their associated receptor proteins. CONCLUSION The results from the present study demonstrate that EMD is capable of activating a wide variety of genes, growth factors, and cytokines when pre-coated onto NBM particles. CLINICAL RELEVANCE The described in vitro effects of EMD on human primary osteoblasts provide further biologic support for the clinical application of a combination of EMD with NBM particles in periodontal and oral regenerative surgery.