78 resultados para airways


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During vertebrate development, the lung inaugurates as an endodermal bud from the primitive foregut. Dichotomous subdivision of the bud results in arborizing airways that form the prospective gas exchanging chambers, where a thin blood-gas barrier (BGB) is established. In the mammalian lung, this proceeds through conversion of type II cells to type I cells, thinning, and elongation of the cells as well as extrusion of the lamellar bodies. Subsequent diminution of interstitial tissue and apposition of capillaries to the alveolar epithelium establish a thin BGB. In the noncompliant avian lung, attenuation proceeds through cell-cutting processes that result in remarkable thinning of the epithelial layer. A host of morphoregulatory molecules, including transcription factors such as Nkx2.1, GATA, HNF-3, and WNT5a; signaling molecules including FGF, BMP-4, Shh, and TFG- β and extracellular proteins and their receptors have been implicated. During normal physiological function, the BGB may be remodeled in response to alterations in transmural pressures in both blood capillaries and airspaces. Such changes are mitigated through rapid expression of the relevant genes for extracellular matrix proteins and growth factors. While an appreciable amount of information regarding molecular control has been documented in the mammalian lung, very little is available on the avian lung.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. The aim of the present study was to investigate the influence of SP-D in a complex three-dimensional human epithelial airway model, which simulates the most important barrier functions of the epithelial airway. The uptake of SPP as well as the secretion of pro-inflammatory cytokines was investigated. Methods SPP were isolated from timothy grass and subsequently fluorescently labeled. A human epithelial airway model was built by using human Type II-pneumocyte like cells (A549 cells), human monocyte derived macrophages as well as human monocyte derived dendritic cells. The epithelial cell model was incubated with SPP in the presence and absence of surfactant protein D. Particle uptake was evaluated by confocal microscopy and advanced computer-controlled analysis. Finally, human primary CD4+ T-Cells were added to the epithelial airway model and soluble mediators were measured by enzyme linked immunosorbent assay or bead array. Results SPP were taken up by epithelial cells, macrophages, and dendritic cells. This uptake coincided with secretion of pro-inflammatory cytokines and chemokines. SP-D modulated the uptake of SPP in a cell type specific way (e.g. increased number of macrophages and epithelial cells, which participated in allergen particle uptake) and led to a decreased secretion of pro-inflammatory cytokines. Conclusion These results display a possible mechanism of how SP-D can modulate the inflammatory response to inhaled allergen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhaled particles may cause increased pulmonary and cardiovascular morbidity and mortality. The wall structures of airways and alveoli act as a series of structural and functional barriers against inhaled particles. Deposited particles are displaced and come into close association with epithelial cells, macrophages and dendritic cells. The cellular interplay after particle deposition in a triple cell co-culture model of the human airway wall was investigated by laser scanning microscopy. Furthermore, the cellular response was determined by measurement of TNF-alpha. Dendritic cells gained access to the apical side of the epithelium where they sampled particles and interacted with macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE: Exhaled nitric oxide (NO) is a well-known marker of established airway inflammation in asthma. Its role in the disease process before the onset of respiratory symptoms remains unclear. Objectives: To examine whether elevated NO in newborns with clinically naive airways is associated with subsequent respiratory symptoms in infancy. METHODS: We measured exhaled NO concentration and output after birth and prospectively assessed respiratory symptoms during infancy in a birth cohort of 164 unselected healthy neonates. We examined a possible association between NO and respiratory symptoms using Poisson regression analysis. RESULTS: In infants of atopic mothers, elevated NO levels after birth were associated with increased risk of subsequent respiratory symptoms (risk ratio [RR], 7.5; 95% confidence interval [CI], 1.7-32.4 for each nl/s increase in NO output; p = 0.007). Similarly, a positive association between NO and symptoms was seen in infants of smoking mothers (RR, 6.6; 95% CI, 2.3-19.3; p = 0.001), with the strongest association in infants whose mothers had both risk factors (RR, 21.8; 95% CI, 5.8-81.3; p < 0.001). CONCLUSIONS: The interaction of NO with maternal atopy and smoking on subsequent respiratory symptoms is present early in life. Clinically, noninvasive NO measurements in newborns may prove useful as a new means to identify high-risk infants. Future confirmation of a role for NO metabolism in the evolution of respiratory disease may provide an avenue for preventative strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cyclic recruitment during mechanical ventilation contributes to ventilator associated lung injury. Two different pathomechanisms in acute respiratory distress syndrome (ARDS) are currently discussed: alveolar collapse vs persistent flooding of small airways and alveoli. We compare two different ARDS animal models by computed tomography (CT) to describe different recruitment and derecruitment mechanisms at different airway pressures: (i) lavage-ARDS, favouring alveolar collapse by surfactant depletion; and (ii) oleic acid ARDS, favouring alveolar flooding by capillary leakage. METHODS: In 12 pigs [25 (1) kg], ARDS was randomly induced, either by saline lung lavage or oleic acid (OA) injection, and 3 animals served as controls. A respiratory breathhold manoeuvre without spontaneous breathing at different continuous positive airway pressure (CPAP) was applied in random order (CPAP levels of 5, 10, 15, 30, 35 and 50 cm H(2)O) and spiral-CT scans of the total lung were acquired at each CPAP level (slice thickness=1 mm). In each spiral-CT the volume of total lung parenchyma, tissue, gas, non-aerated, well-aerated, poorly aerated, and over-aerated lung was calculated. RESULTS: In both ARDS models non-aerated lung volume decreased significantly from CPAP 5 to CPAP 50 [oleic acid lung injury (OAI): 346.9 (80.1) to 96.4 (48.8) ml, P<0.001; lavage-ARDS: 245 17.6) to 42.7 (4.8) ml, P<0.001]. In lavage-ARDS poorly aerated lung volume decreased at higher CPAP levels [232 (45.2) at CPAP 10 to 84 (19.4) ml at CPAP 50, P<0.001] whereas in OAI poorly aerated lung volume did not vary at different airway pressures. CONCLUSIONS: In both ARDS models well-aerated and non-aerated lung volume respond to different CPAP levels in a comparable fashion: Thus, a cyclical alveolar collapse seems to be part of the derecruitment process also in the OA-ARDS. In OA-ARDS, the increase in poorly aerated lung volume reflects the specific initial lesion, that is capillary leakage with interstitial and alveolar oedema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-frequency respiratory impedance data measured noninvasively by the high-speed interrupter technique (HIT), particularly the first antiresonance frequency (f(ar,1)), is related to airway wall mechanics. The aim of this study was to evaluate the feasibility and repeatability of HIT in unsedated pre-term infants, and to compare values of f(ar,1) from 18 pre-term (post-conceptional age 32-37 weeks, weight 1,730-2,910 g) and 18 full-term infants (42-47 weeks, 3,920-5,340 g). Among the pre-term infants, there was good short-term repeatability of f(ar,1) within a single sleep epoch (mean (sd) coefficient of variance: 8 (1.7)%), but 95% limits of agreement for repeated measures of f(ar,1) after 3-8 h were relatively wide (-41 Hz; 37 Hz). f(ar,1) was significantly lower in pre-term infants (199 versus 257 Hz), indicating that wave propagation characteristics in pre-term airways are different from those of full-term infants. The present authors suggest that this is consistent with developmental differences in airway wall structure and compliance, including the influence of the surrounding tissue. Since flow limitation is determined by wave propagation velocity and airway cross-sectional area, it was hypothesised that the physical ability of the airways to carry large flows is fundamentally different in pre-term than in full-term infants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The airways of cystic fibrosis (CF) patients are characterised by neutrophils that release high amounts of elastase overwhelming the local antiprotease shield. Inhalation of alpha(1)-antitrypsin (AAT) may restore the protease-antiprotease balance and attenuate airway inflammation in CF airways. The aims of the present study were: 1) to assess the best deposition region for inhaled AAT by two different inhalation strategies; and 2) to examine the effect of 4 weeks of AAT inhalation on lung function, protease-antiprotease balance and airway inflammation in CF patients. In a prospective, randomised study, 52 CF patients received a daily deposition by inhalation of 25 mg AAT for 4 weeks targeting their peripheral or bronchial compartment. The levels of elastase activity, AAT, pro-inflammatory cytokines, neutrophils, immunoglobulin G fragments and the numbers of Pseudomonas aeruginosa were assessed in induced sputum before and after the inhalation period. Inhalation of AAT increased AAT levels and decreased the levels of elastase activity, neutrophils, pro-inflammatory cytokines and the numbers of P. aeruginosa. However, it had no effect on lung function. No difference was found between the peripheral and bronchial inhalation mode. In conclusion, although no effect on lung function was observed, the clear reduction of airway inflammation after alpha(1)-antitrypsin treatment may precede pulmonary structural changes. The alpha(1)-antitrypsin deposition region may play a minor role for alpha(1)-antitrypsin inhalation in cystic fibrosis patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inquilinus limosus is a novel Gram-negative bacterium of the subdivision alpha-Proteobacteria recently found in the airways of patients with cystic fibrosis (CF). Here, the authors report on the clinical courses of six CF patients colonized with I. limosus. Five patients suffered from either an acute respiratory exacerbation or a progressive loss of pulmonary function, whereas one patient was in a stable clinical situation. This study focused on two aims: (i) the clonal analysis of I. limosus isolates by random amplified polymorphic DNA (RAPD)-PCR, and (ii) the clarification of whether the presence of I. limosus in the respiratory tract is associated with a specific serum antibody response. Serum IgG was detected by immunoblotting using I. limosus whole-cell-lysate proteins as antigens. Sera from healthy blood donors (n=10) and from CF patients colonized with Pseudomonas aeruginosa (n=10) were found to be immunoblot negative. All six Inquilinus-positive patients raised serum IgG antibodies against various I. limosus antigens. Surprisingly, in one patient, a specific I. limosus serum antibody response was already detected 1 year prior to Inquilinus-positive sputum cultures. Two prominent antigens were characterized by MALDI-MS: a 23 kDa protein revealed homology to the outer membrane lipoprotein OmlA of Actinobacillus pleuropneumoniae, and an 18 kDa protein to a protein-tyrosine phosphatase of Burkholderia cepacia. In conclusion, detection of I. limosus is accompanied by a specific serum antibody response and may reflect the infectious/pathogenic potential of I. limosus. Moreover, IgG immunoblotting may be useful to detect early infection with I. limosus and may support the selective cultivation of this novel emerging pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to identify the classic autopsy signs of drowning in post-mortem multislice computed tomography (MSCT). Therefore, the post-mortem pre-autopsy MSCT- findings of ten drowning cases were correlated with autopsy and statistically compared with the post-mortem MSCT of 20 non-drowning cases. Fluid in the airways was present in all drowning cases. Central aspiration in either the trachea or the main bronchi was usually observed. Consecutive bronchospasm caused emphysema aquosum. Sixty percent of drowning cases showed a mosaic pattern of the lung parenchyma due to regions of hypo- and hyperperfused lung areas of aspiration. The resorption of fresh water in the lung resulted in hypodensity of the blood representing haemodilution and possible heart failure. Swallowed water distended the stomach and duodenum; and inflow of water filled the paranasal sinuses (100%). All the typical findings of drowning, except Paltau's spots, were detected using post-mortem MSCT, and a good correlation of MSCT and autopsy was found. The advantage of MSCT was the direct detection of bronchospasm, haemodilution and water in the paranasal sinus, which is rather complicated or impossible at the classical autopsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin-8 (IL-8) activates neutrophils via the chemokine receptors CXCR1 and CXCR2. However, the airways of individuals with cystic fibrosis are frequently colonized by bacterial pathogens, despite the presence of large numbers of neutrophils and IL-8. Here we show that IL-8 promotes bacterial killing by neutrophils through CXCR1 but not CXCR2. Unopposed proteolytic activity in the airways of individuals with cystic fibrosis cleaved CXCR1 on neutrophils and disabled their bacterial-killing capacity. These effects were protease concentration-dependent and also occurred to a lesser extent in individuals with chronic obstructive pulmonary disease. Receptor cleavage induced the release of glycosylated CXCR1 fragments that were capable of stimulating IL-8 production in bronchial epithelial cells via Toll-like receptor 2. In vivo inhibition of proteases by inhalation of alpha1-antitrypsin restored CXCR1 expression and improved bacterial killing in individuals with cystic fibrosis. The cleavage of CXCR1, the functional consequences of its cleavage, and the identification of soluble CXCR1 fragments that behave as bioactive components represent a new pathophysiologic mechanism in cystic fibrosis and other chronic lung diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Translocation of nanoparticles (NP) from the pulmonary airways into other pulmonary compartments or the systemic circulation is controversially discussed in the literature. In a previous study it was shown that titanium dioxide (TiO2) NP were "distributed in four lung compartments (air-filled spaces, epithelium/endothelium, connective tissue, capillary lumen) in correlation with compartment size". It was concluded that particles can move freely between these tissue compartments. To analyze whether the distribution of TiO2 NP in the lungs is really random or shows a preferential targeting we applied a newly developed method for comparing NP distributions. METHODS: Rat lungs exposed to an aerosol containing TiO2 NP were prepared for light and electron microscopy at 1 h and at 24 h after exposure. Numbers of TiO2 NP associated with each compartment were counted using energy filtering transmission electron microscopy. Compartment size was estimated by unbiased stereology from systematically sampled light micrographs. Numbers of particles were related to compartment size using a relative deposition index and chi-squared analysis. RESULTS: Nanoparticle distribution within the four compartments was not random at 1 h or at 24 h after exposure. At 1 h the connective tissue was the preferential target of the particles. At 24 h the NP were preferentially located in the capillary lumen. CONCLUSION: We conclude that TiO2 NP do not move freely between pulmonary tissue compartments, although they can pass from one compartment to another with relative ease. The residence time of NP in each tissue compartment of the respiratory system depends on the compartment and the time after exposure. It is suggested that a small fraction of TiO2 NP are rapidly transported from the airway lumen to the connective tissue and subsequently released into the systemic circulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A morphological and morphometric study of the lung of the newborn quokka wallaby (Setonix brachyurus) was undertaken to assess its morphofunctional status at birth. Additionally, skin structure and morphometry were investigated to assess the possibility of cutaneous gas exchange. The lung was at canalicular stage and comprised a few conducting airways and a parenchyma of thick-walled tubules lined by stretches of cuboidal pneumocytes alternating with squamous epithelium, with occasional portions of thin blood-gas barrier. The tubules were separated by abundant intertubular mesenchyme, aggregations of developing capillaries and mesenchymal cells. Conversion of the cuboidal pneumocytes to type I cells occurred through cell broadening and lamellar body extrusion. Superfluous cuboidal cells were lost through apoptosis and subsequent clearance by alveolar macrophages. The establishment of the thin blood-gas barrier was established through apposition of the incipient capillaries to the formative thin squamous epithelium. The absolute volume of the lung was 0.02 +/- 0.001 cm(3) with an air space surface area of 4.85 +/- 0.43 cm(2). Differentiated type I pneumocytes covered 78% of the tubular surface, the rest 22% going to long stretches of type II cells, their precursors or low cuboidal transitory cells with sparse lamellar bodies. The body weight-related diffusion capacity was 2.52 +/- 0.56 mL O(2) min(-1) kg(-1). The epidermis was poorly developed, and measured 29.97 +/- 4.88 microm in thickness, 13% of which was taken by a thin layer of stratum corneum, measuring 4.87 +/- 0.98 microm thick. Superficial capillaries were closely associated with the epidermis, showing the possibility that the skin also participated in some gaseous exchange. Qualitatively, the neonate quokka lung had the basic constituents for gas exchange but was quantitatively inadequate, implying the significance of percutaneous gas exchange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directed release of human immunodeficiency virus type 1 (HIV-1) into the cleft of the virological synapse that can form between infected and uninfected T cells, for example, in lymph nodes, is thought to contribute to the systemic spread of this virus. In contrast, influenza virus, which causes local infections, is shed into the airways of the respiratory tract from free surfaces of epithelial cells. We now demonstrate that such differential release of HIV-1 and influenza virus is paralleled, at the subcellular level, by viral assembly at different microsegments of the plasma membrane of HeLa cells. HIV-1, but not influenza virus, buds through microdomains containing the tetraspanins CD9 and CD63. Consequently, the anti-CD9 antibody K41, which redistributes its antigen and also other tetraspanins to cell-cell adhesion sites, interferes with HIV-1 but not with influenza virus release. Altogether, these data strongly suggest that the bimodal egress of these two pathogenic viruses, like their entry into target cells, is guided by specific sets of host cell proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Existing methods of non-viral airway gene transfer suffer from low levels of efficiency. Electroporation has been used to enhance gene transfer in a range of tissues. Here we assess the usefulness of electroporation for enhancing gene transfer in the lungs of mice and sheep. METHODS: Naked plasmid DNA (pDNA) expressing either luciferase or green fluorescent protein (GFP) was delivered to mouse lungs by instillation. Following surgical visualisation, the lungs were directly electroporated and the level and duration of luciferase activity was assessed and cell types that were positive for GFP were identified in lung cryosections. Naked pDNA was nebulised to the sheep lung and electrodes attached to the tip of a bronchoscope were used to electroporate airway segment bifurcations, Luciferase activity was assessed in electroporated and control non-electroporated regions, after 24 h. RESULTS: Following delivery of naked pDNA to the mouse lung, electroporation resulted in up to 400-fold higher luciferase activity than naked pDNA alone when luciferase was under the control of a cytomegalovirus (CMV) promoter. Following delivery of a plasmid containing the human polyubiquitin C (UbC) promoter, electroporation resulted in elevated luciferase activity for at least 28 days. Visualisation of GFP indicated that electroporation resulted in increased GFP detection compared with non-electroporated controls. In the sheep lung electroporation of defined sites in the airways resulted in luciferase activity 100-fold greater than naked pDNA alone. CONCLUSIONS: These results indicate that electroporation can be used to enhance gene transfer in the lungs of mice and sheep without compromising the duration of expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinical efficacy of aerosol therapy in premature newborns depends on the efficiency of delivery of aerosolized drug to the bronchial tree. To study the influence of various anatomical, physical, and physiological factors on aerosol delivery in preterm newborns, it is crucial to have appropriate in vitro models, which are currently not available. We therefore constructed the premature infant nose throat-model (PrINT-Model), an upper airway model corresponding to a premature infant of 32-wk gestational age by three-dimensional (3D) reconstruction of a three-planar magnetic resonance imaging scan and subsequent 3D-printing. Validation was realized by visual comparison and comparison of total airway volume. To study the feasibility of measuring aerosol deposition, budesonide was aerosolized through the cast and lung dose was expressed as percentage of nominal dose. The airway volumes of the initial magnetic resonance imaging and validation computed tomography scan showed a relative deviation of 0.94%. Lung dose at low flow (1 L/min) was 61.84% and 9.00% at high flow (10 L/min), p < 0.0001. 3D-reconstruction provided an anatomically accurate surrogate of the upper airways of a 32-wk-old premature infant, making the model suitable for future in vitro testing.