33 resultados para X-ray computed tomography
Resumo:
The aim of this study was to evaluate whether measurements performed on conventional frontal radiographs are comparable to measurements performed on three-dimensional (3D) models of human skulls derived from cone beam computed tomography (CBCT) scans and if the latter can be used in longitudinal studies. Cone beam computed tomography scans and conventional frontal cephalometric radiographs were made of 40 dry human skulls. From the CBCT scan a 3D model was constructed. Standard cephalometric software was used to identify landmarks and to calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs, and on all images, five times with a time interval of 1 wk. Intra-observer reliability was acceptable for all measurements. There was a statistically significant and clinically relevant difference between measurements performed on conventional frontal radiographs and on 3D CBCT-derived models of the same skull. There was a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements performed on 3D models constructed from CBCT scans. We therefore recommend that 3D models should not be used for longitudinal research in cases where there are only two-dimensional (2D) records from the past.
Resumo:
PURPOSE Images from computed tomography (CT), combined with navigation systems, improve the outcomes of local thermal therapies that are dependent on accurate probe placement. Although the usage of CT is desired, its availability for time-consuming radiological interventions is limited. Alternatively, three-dimensional images from C-arm cone-beam CT (CBCT) can be used. The goal of this study was to evaluate the accuracy of navigated CBCT-guided needle punctures, controlled with CT scans. METHODS Five series of five navigated punctures were performed on a nonrigid phantom using a liver specific navigation system and CBCT volumetric dataset for planning and navigation. To mimic targets, five titanium screws were fixed to the phantom. Target positioning accuracy (TPECBCT) was computed from control CT scans and divided into lateral and longitudinal components. Additionally, CBCT-CT guidance accuracy was deducted by performing CBCT-to-CT image coregistration and measuring TPECBCT-CT from fused datasets. Image coregistration was evaluated using fiducial registration error (FRECBCT-CT) and target registration error (TRECBCT-CT). RESULTS Positioning accuracies in lateral directions pertaining to CBCT (TPECBCT = 2.1 ± 1.0 mm) were found to be better to those achieved from previous study using CT (TPECT = 2.3 ± 1.3 mm). Image coregistration error was 0.3 ± 0.1 mm, resulting in an average TRE of 2.1 ± 0.7 mm (N = 5 targets) and average Euclidean TPECBCT-CT of 3.1 ± 1.3 mm. CONCLUSIONS Stereotactic needle punctures might be planned and performed on volumetric CBCT images and controlled with multidetector CT with positioning accuracy higher or similar to those performed using CT scanners.
Resumo:
OBJECTIVE To compare the accuracy of radiography and computed tomography (CT) in predicting implant position in relation to the vertebral canal in the cervical and thoracolumbar vertebral column. STUDY DESIGN In vitro imaging and anatomic study. ANIMALS Medium-sized canine cadaver vertebral columns (n=12). METHODS Steinmann pins were inserted into cervical and thoracolumbar vertebrae based on established landmarks but without predetermination of vertebral canal violation. Radiographs and CT images were obtained and evaluated by 6 individuals. A random subset of pins was evaluated for ability to distinguish left from right pins on radiographs. The ability to correctly identify vertebral canal penetration for all pins was assessed both on radiographs and CT. Spines were then anatomically prepared and visual examination of pin penetration into the canal served as the gold standard. RESULTS Left/right accuracy was 93.1%. Overall sensitivity of radiographs and CT to detect vertebral canal penetration by an implant were significantly different and estimated as 50.7% and 93.4%, respectively (P<.0001). Sensitivity was significantly higher for complete versus partial penetration and for radiologists compared with nonradiologists for both imaging modalities. Overall specificity of radiographs and CT to detect vertebral canal penetration was 82.9% and 86.4%, respectively (P=.049). CONCLUSIONS CT was superior to radiographic assessment and is the recommended imaging modality to assess penetration into the vertebral canal. CLINICAL RELEVANCE CT is significantly more accurate in identifying vertebral canal violation by Steinmann pins and should be performed postoperatively to assess implant position.