97 resultados para Wireless sensor and actuator network. LWiSSy. Domain specific language. modularization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to determine what activity of daily living a person performs is of interest in many application domains. It is possible to determine the physical and cognitive capabilities of the elderly by inferring what activities they perform in their houses. Our primary aim was to establish a proof of concept that a wireless sensor system can monitor and record physical activity and these data can be modeled to predict activities of daily living. The secondary aim was to determine the optimal placement of the sensor boxes for detecting activities in a room. A wireless sensor system was set up in a laboratory kitchen. The ten healthy participants were requested to make tea following a defined sequence of tasks. Data were collected from the eight wireless sensor boxes placed in specific places in the test kitchen and analyzed to detect the sequences of tasks performed by the participants. These sequence of tasks were trained and tested using the Markov Model. Data analysis focused on the reliability of the system and the integrity of the collected data. The sequence of tasks were successfully recognized for all subjects and the averaged data pattern of tasks sequences between the subjects had a high correlation. Analysis of the data collected indicates that sensors placed in different locations are capable of recognizing activities, with the movement detection sensor contributing the most to detection of tasks. The central top of the room with no obstruction of view was considered to be the best location to record data for activity detection. Wireless sensor systems show much promise as easily deployable to monitor and recognize activities of daily living.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy efficiency is a major concern in the design of Wireless Sensor Networks (WSNs) and their communication protocols. As the radio transceiver typically accounts for a major portion of a WSN node’s power consumption, researchers have proposed Energy-Efficient Medium Access (E2-MAC) protocols that switch the radio transceiver off for a major part of the time. Such protocols typically trade off energy-efficiency versus classical quality of service parameters (throughput, latency, reliability). Today’s E2-MAC protocols are able to deliver little amounts of data with a low energy footprint, but introduce severe restrictions with respect to throughput and latency. Regrettably, they yet fail to adapt to varying traffic load at run-time. This paper presents MaxMAC, an E2-MAC protocol that targets at achieving maximal adaptivity with respect to throughput and latency. By adaptively tuning essential parameters at run-time, the protocol reaches the throughput and latency of energy-unconstrained CSMA in high-traffic phases, while still exhibiting a high energy-efficiency in periods of sparse traffic. The paper compares the protocol against a selection of today’s E2-MAC protocols and evaluates its advantages and drawbacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data gathering, either for event recognition or for monitoring applications is the primary intention for sensor network deployments. In many cases, data is acquired periodically and autonomously, and simply logged onto secondary storage (e.g. flash memory) either for delayed offline analysis or for on demand burst transfer. Moreover, operational data such as connectivity information, node and network state is typically kept as well. Naturally, measurement and/or connectivity logging comes at a cost. Space for doing so is limited. Finding a good representative model for the data and providing clever coding of information, thus data compression, may be a means to use the available space to its best. In this paper, we explore the design space for data compression for wireless sensor and mesh networks by profiling common, publicly available algorithms. Several goals such as a low overhead in terms of utilized memory and compression time as well as a decent compression ratio have to be well balanced in order to find a simple, yet effective compression scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lint-like program checkers are popular tools that ensure code quality by verifying compliance with best practices for a particular programming language. The proliferation of internal domain-specific languages and models, however, poses new challenges for such tools. Traditional program checkers produce many false positives and fail to accurately check constraints, best practices, common errors, possible optimizations and portability issues particular to domain-specific languages. We advocate the use of dedicated rules to check domain-specific practices. We demonstrate the implementation of domain-specific rules, the automatic fixing of violations, and their application to two case-studies: (1) Seaside defines several internal DSLs through a creative use of the syntax of the host language; and (2) Magritte adds meta-descriptions to existing code by means of special methods. Our empirical validation demonstrates that domain-specific program checking significantly improves code quality when compared with general purpose program checking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contention-based MAC protocols follow periodic listen/sleep cycles. These protocols face the problem of virtual clustering if different unsynchronized listen/sleep schedules occur in the network, which has been shown to happen in wireless sensor networks. To interconnect these virtual clusters, border nodes maintaining all respective listen/sleep schedules are required. However, this is a waste of energy, if locally a common schedule can be determined. We propose to achieve local synchronization with a mechanism that is similar to gravitation. Clusters represent the mass, whereas synchronization messages sent by each cluster represent the gravitation force of the according cluster. Due to the mutual attraction caused by the clusters, all clusters merge finally. The exchange of synchronization messages itself is not altered by LACAS. Accordingly, LACAS introduces no overhead. Only a not yet used property of synchronization mechanisms is exploited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Answering run-time questions in object-oriented systems involves reasoning about and exploring connections between multiple objects. Developer questions exercise various aspects of an object and require multiple kinds of interactions depending on the relationships between objects, the application domain and the differing developer needs. Nevertheless, traditional object inspectors, the essential tools often used to reason about objects, favor a generic view that focuses on the low-level details of the state of individual objects. This leads to an inefficient effort, increasing the time spent in the inspector. To improve the inspection process, we propose the Moldable Inspector, a novel approach for an extensible object inspector. The Moldable Inspector allows developers to look at objects using multiple interchangeable presentations and supports a workflow in which multiple levels of connecting objects can be seen together. Both these aspects can be tailored to the domain of the objects and the question at hand. We further exemplify how the proposed solution improves the inspection process, introduce a prototype implementation and discuss new directions for extending the Moldable Inspector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Debuggers are crucial tools for developing object-oriented software systems as they give developers direct access to the running systems. Nevertheless, traditional debuggers rely on generic mechanisms to explore and exhibit the execution stack and system state, while developers reason about and formulate domain-specific questions using concepts and abstractions from their application domains. This creates an abstraction gap between the debugging needs and the debugging support leading to an inefficient and error-prone debugging effort. To reduce this gap, we propose a framework for developing domain-specific debuggers called the Moldable Debugger. The Moldable Debugger is adapted to a domain by creating and combining domain-specific debugging operations with domain-specific debugging views, and adapts itself to a domain by selecting, at run time, appropriate debugging operations and views. We motivate the need for domain-specific debugging, identify a set of key requirements and show how our approach improves debugging by adapting the debugger to several domains.