63 resultados para Wavelength dependence
Resumo:
We report a combined experimental and theoretical investigation of the length dependence and anchor group dependence of the electrical conductance of a series of oligoyne molecular wires in single-molecule junctions with gold contacts. Experimentally, we focus on the synthesis and properties of diaryloligoynes with n = 1, 2, and 4 triple bonds and the anchor dihydrobenzo[b]thiophene (BT). For comparison, we also explored the aurophilic anchor group cyano (CN), amino (NH2), thiol (SH), and 4-pyridyl (PY). Scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques are employed to investigate single-molecule conductance characteristics. The BT moiety is superior as compared to traditional anchoring groups investigated so far. BT-terminated oligoynes display a 100% probability of junction formation and possess conductance values which are the highest of the oligoynes studied and, moreover, are higher than other conjugated molecular wires of similar length. Density functional theory (DFT)-based calculations are reported for oligoynes with n = 1−4 triple bonds. Complete conductance traces and conductance distributions are computed for each family of molecules. The sliding of the anchor groups leads to oscillations in both the electrical conductance and the binding energies of the studied molecular wires. In agreement with experimental results, BT-terminated oligoynes are predicted to have a high electrical conductance. The experimental attenuation constants βH range between 1.7 nm−1 (CN) and 3.2 nm−1 (SH) and show the following trend: βH(CN) < βH(NH2) < βH(BT) < βH(PY) ≈ βH(SH). DFT-based calculations yield lower values, which range between 0.4 nm−1 (CN) and 2.2 nm−1 (PY).
Resumo:
The synthesis is reported of a new series of oligo(aryleneethynylene) (OAE) derivatives of up to ca. 6 nm in molecular length (OAE9) using iterative Pd-mediated Sonogashira cross-coupling methodology. The oligo-p-phenyleneethynylene cores of the molecular wires are functionalized at both termini with pyridyl units for attachment to gold leads. The molecular structures determined by single-crystal X-ray analysis are reported for OAE4, OAE5, OAE7, and OAE8a. The charge transport characteristics of derivatives OAE3–OAE9 in single-molecular junctions have been studied using the mechanically controlled break junction technique. The data demonstrate that the junction conductance decreases with increasing molecular length. A transition from coherent transport via tunneling to a hopping mechanism is found for OAE wires longer than ca. 3 nm.
Resumo:
OBJECTIVE The aim of our investigation was to review the implementation of a comprehensive tobacco dependence education (TDE) curriculum at the Medi School of Dental Hygiene (MSDH), Bern, Switzerland, 2001-2008. METHODS In 2001, new forms to record patients' tobacco use history and willingness to quit were created for all the MSDH patients. In 2002, a new theoretically based tobacco dependence treatment protocol was implemented into the MSDH curriculum. Students received instruction on how to provide brief tobacco use dependence interventions as well as maintain detailed records of patient tobacco use and cessation interventions for every smoker at all dental hygiene visits. RESULTS In 2002, 17 lecture hours were added to the following subjects: pathology, periodontology, preventive dentistry, pharmacology and psychology. During the same time period, 2213 patients (56.9% women) have visited the MSDH. Smoking status was recorded in 85.7% of all the patients (30.2% smokers). Brief tobacco use interventions were recorded in 36.8% of all smokers while 7.6% of these have reported to quit smoking. CONCLUSIONS Overall, the new TDE curriculum was successfully implemented and accepted by the MSDH faculty. Applications in the clinical practice, however, may still be improved to better identify smokers and increase initial and follow-up interventions potentially leading to higher quit rates.
Resumo:
This section presents abstracts of three studies on how consumer choices can be influenced by the name letter effect of brands without decision makers being aware of this influence. The first paper examined whether making brand names similar to consumers' names increases the likelihood that consumers will choose the brand. One prediction is that people will prefer and be more likely to choose products or services whose names prominently feature the letters in their own first or last names. The results showed that subjects' preference rankings and evaluations of name letter matching brands were higher than those of non-name letter matching brands. The second paper tested the possibility of using subliminal priming to activate a concept that a persuasive communicator could take advantage of. To examine the idea, two experiments were presented. In the first experiment, participants' level of thirst were manipulated and then subliminally presented them with either thirst-related words or control words. While the manipulations had no effect on participants' self-reported, conscious ratings of thirst, there was a significant interactive effect of the two factors on how much of the drink provided in the taste test was consumed. In a second, follow up experiment, thirsty participants were subliminally presented with either thirst-related words or control words after which they viewed advertisements for two new sports beverages. In conclusion, the research demonstrates that under certain conditions, subliminal printing techniques can enhance persuasion. The third paper hypothesized that the lack of correlations between implicit and explicit evaluations is due to measurement error.
Resumo:
BACKGROUND: Phosphatidylethanol (PEth) is a direct marker of alcohol consumption, which has been known for almost 30 years. Each PEth molecule carries 2 fatty acids, which differ in chain length and degree of unsaturation. It is formed by means of phospholipase D in the presence of ethanol. Usually, this marker was used by quantification of the PEth homologue 16:0/18:1. The intention of this work was to get more information about the distribution and the quantity of the different PEth homologues. METHODS: Blood samples from 12 alcohol-dependent subjects were collected and analyzed during withdrawal therapy. For comparison, blood from 78 healthy social drinkers was also analyzed. PEth analysis was performed as follows: after liquid-liquid extraction, the homologues were separated on a Luna Phenyl Hexyl column, injected to an HPLC system (1100 system; Agilent) and identified by ESI-MS/MS (QTrap 2000; AB Sciex) using multiple reaction monitoring. RESULTS: PEth 16:0/18:1 is the major homologue comparing the area ratios of PEth homologues in blood samples from alcoholics. Additional prevalent homologues were PEth 16:0/18:2, 18:0/18:2, and 18:0/18:1. The homologues occurring in blood samples from alcoholics as well as from social drinkers were mostly the same, but differences among their distribution pattern were observed. CONCLUSIONS: In addition to the approach to quantitate the PEth homologue 16:0/18:1, this is a new and alternative proceeding for the differentiation between alcoholics and social drinkers using this alcohol consumption marker.
Resumo:
The geometric characterization of low-voltage dielectric electro-active polymer (EAP) structures, comprised of nanometer thickness but areas of square centimeters, for applications such as artificial sphincters requires methods with nanometer precision. Direct optical detection is usually restricted to sub-micrometer resolution because of the wavelength of the light applied. Therefore, we propose to take advantage of the cantilever bending system with optical readout revealing a sub-micrometer resolution at the deflection of the free end. It is demonstrated that this approach allows us to detect bending of rather conventional planar asymmetric, dielectric EAP-structures applying voltages well below 10 V. For this purpose, we built 100 μm-thin silicone films between 50 nm-thin silver layers on a 25 μm-thin polyetheretherketone (PEEK) substrate. The increase of the applied voltage in steps of 50 V until 1 kV resulted in a cantilever bending that exhibits only in restricted ranges the expected square dependence. The mean laser beam displacement on the detector corresponded to 6 nm per volt. The apparatus will therefore become a powerful mean to analyze and thereby improve low-voltage dielectric EAP-structures to realize nanometer-thin layers for stack actuators to be incorporated into artificial sphincter systems for treating severe urinary and fecal incontinence.
Resumo:
OBJECTIVES: Patients' motivation to change their substance use is usually viewed as a crucial component of successful treatment. The objective of this study was to examine whether motivation contributes to drinking outcomes after residential treatment for alcohol dependence. METHODS: Our sample included 415 Swiss patients from 12 residential alcohol treatment programs. We statistically controlled for important predictors, such as sex, employment, alcohol consumption before admission, severity of alcohol dependence, severity of psychiatric symptoms at admission, and alcohol-related self-efficacy at discharge. Abstinence, alcohol consumption, and time to first drink were used as primary outcome measures and were assessed 1 year after discharge from treatment. RESULTS: Action-oriented motivation to change substance use had a modest impact on drinking outcomes. At the 1-year follow-up, only the Taking Steps subscale of the Stages of Change Readiness and Treatment Eagerness Scale and alcohol-related self-efficacy were found to be significant predictors of abstinence and the number of standard drinks. CONCLUSIONS: The impact of action-oriented motivation at admission to residential treatment is modest but still relevant, compared with other outcome predictors. It may be useful to focus treatment on improving action-oriented motivation to reduce substance use
Resumo:
The influence of a reduced Greenland Ice Sheet (GrIS) on Greenland's surface climate during the Eemian interglacial is studied using a set of simulations with different GrIS realizations performed with a comprehensive climate model. We find a distinct impact of changes in the GrIS topography on Greenland's surface air temperatures (SAT) even when correcting for changes in surface elevation, which influences SAT through the lapse rate effect. The resulting lapse-rate-corrected SAT anomalies are thermodynamically driven by changes in the local surface energy balance rather than dynamically caused through anomalous advection of warm/cold air masses. The large-scale circulation is indeed very stable among all sensitivity experiments and the Northern Hemisphere (NH) flow pattern does not depend on Greenland's topography in the Eemian. In contrast, Greenland's surface energy balance is clearly influenced by changes in the GrIS topography and this impact is seasonally diverse. In winter, the variable reacting strongest to changes in the topography is the sensible heat flux (SHF). The reason is its dependence on surface winds, which themselves are controlled to a large extent by the shape of the GrIS. Hence, regions where a receding GrIS causes higher surface wind velocities also experience anomalous warming through SHF. Vice-versa, regions that become flat and ice-free are characterized by low wind speeds, low SHF, and anomalous low winter temperatures. In summer, we find surface warming induced by a decrease in surface albedo in deglaciated areas and regions which experience surface melting. The Eemian temperature records derived from Greenland proxies, thus, likely include a temperature signal arising from changes in the GrIS topography. For the Eemian ice found in the NEEM core, our model suggests that up to 3.1 °C of the annual mean Eemian warming can be attributed to these topography-related processes and hence is not necessarily linked to large-scale climate variations.
Resumo:
Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at root S-NN = 2.76 TeV corresponding to an integrated luminosity of approximately 7 mu b(-1), ATLAS has measured jets with a calorimeter system over the pseudorapidity interval vertical bar eta vertical bar < 2.1 and over the transverse momentum range 38 < pT <210 GeV. Jets were reconstructed using the anti-k(t) algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," R-CP. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. R-CP varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.
Resumo:
Measurements of the variation of inclusive jet suppression as a function of relative azimuthal angle, Delta phi, with respect to the elliptic event plane provide insight into the path-length dependence of jet quenching. ATLAS has measured the Delta phi dependence of jet yields in 0.14 nb(-1) of root s(NN) = 2.76 TeV Pb + Pb collisions at the LHC for jet transverse momenta p(T) > 45 GeV in different collision centrality bins using an underlying event subtraction procedure that accounts for elliptic flow. The variation of the jet yield with Delta phi was characterized by the parameter, nu(jet)(2), and the ratio of out-of-plane (Delta phi similar to pi/2) to in-plane (Delta phi similar to 0) yields. Nonzero nu(jet)(2) values were measured in all centrality bins for p(T) < 160 GeV. The jet yields are observed to vary by as much as 20% between in-plane and out-of-plane directions.
Resumo:
Plectin, a cytolinker of the plakin family, anchors the intermediate filament (IF) network formed by keratins 5 and 14 (K5/K14) to hemidesmosomes, junctional adhesion complexes in basal keratinocytes. Genetic alterations of these proteins cause epidermolysis bullosa simplex (EBS) characterized by disturbed cytoarchitecture and cell fragility. The mechanisms through which mutations located after the documented plectin IF-binding site, composed of the plakin-repeat domain (PRD) B5 and the linker, as well as mutations in K5 or K14, lead to EBS remain unclear. We investigated the interaction of plectin C terminus, encompassing four domains, the PRD B5, the linker, the PRD C, and the C extremity, with K5/K14 using different approaches, including a rapid and sensitive fluorescent protein-binding assay, based on enhanced green fluorescent protein-tagged proteins (FluoBACE). Our results demonstrate that all four plectin C-terminal domains contribute to its association with K5/K14 and act synergistically to ensure efficient IF binding. The plectin C terminus predominantly interacted with the K5/K14 coil 1 domain and bound more extensively to K5/K14 filaments compared with monomeric keratins or IF assembly intermediates. These findings indicate a multimodular association of plectin with K5/K14 filaments and give insights into the molecular basis of EBS associated with pathogenic mutations in plectin, K5, or K14 genes.Journal of Investigative Dermatology advance online publication, 10 July 2014; doi:10.1038/jid.2014.255.