72 resultados para Visual Object Identification Task
Resumo:
Edges are crucial for the formation of coherent objects from sequential sensory inputs within a single modality. Moreover, temporally coincident boundaries of perceptual objects across different sensory modalities facilitate crossmodal integration. Here, we used functional magnetic resonance imaging in order to examine the neural basis of temporal edge detection across modalities. Onsets of sensory inputs are not only related to the detection of an edge but also to the processing of novel sensory inputs. Thus, we used transitions from input to rest (offsets) as convenient stimuli for studying the neural underpinnings of visual and acoustic edge detection per se. We found, besides modality-specific patterns, shared visual and auditory offset-related activity in the superior temporal sulcus and insula of the right hemisphere. Our data suggest that right hemispheric regions known to be involved in multisensory processing are crucial for detection of edges in the temporal domain across both visual and auditory modalities. This operation is likely to facilitate cross-modal object feature binding based on temporal coincidence. Hum Brain Mapp, 2008. (c) 2008 Wiley-Liss, Inc.
Resumo:
Autism has been associated with enhanced local processing on visual tasks. Originally, this was based on findings that individuals with autism exhibited peak performance on the block design test (BDT) from the Wechsler Intelligence Scales. In autism, the neurofunctional correlates of local bias on this test have not yet been established, although there is evidence of alterations in the early visual cortex. Functional MRI was used to analyze hemodynamic responses in the striate and extrastriate visual cortex during BDT performance and a color counting control task in subjects with autism compared to healthy controls. In autism, BDT processing was accompanied by low blood oxygenation level-dependent signal changes in the right ventral quadrant of V2. Findings indicate that, in autism, locally oriented processing of the BDT is associated with altered responses of angle and grating-selective neurons, that contribute to shape representation, figure-ground, and gestalt organization. The findings favor a low-level explanation of BDT performance in autism.
Resumo:
OBJECTIVE: To investigate whether autistic subjects show a different pattern of neural activity than healthy individuals during processing of faces and complex patterns. METHODS: Blood oxygen level-dependent (BOLD) signal changes accompanying visual processing of faces and complex patterns were analyzed in an autistic group (n = 7; 25.3 [6.9] years) and a control group (n = 7; 27.7 [7.8] years). RESULTS: Compared with unaffected subjects, autistic subjects demonstrated lower BOLD signals in the fusiform gyrus, most prominently during face processing, and higher signals in the more object-related medial occipital gyrus. Further signal increases in autistic subjects vs controls were found in regions highly important for visual search: the superior parietal lobule and the medial frontal gyrus, where the frontal eye fields are located. CONCLUSIONS: The cortical activation pattern during face processing indicates deficits in the face-specific regions, with higher activations in regions involved in visual search. These findings reflect different strategies for visual processing, supporting models that propose a predisposition to local rather than global modes of information processing in autism.
Resumo:
The right posterior parietal cortex (PPC) is critically involved in visual exploration behaviour, and damage to this area may lead to neglect of the left hemispace. We investigated whether neglect-like visual exploration behaviour could be induced in healthy subjects using theta burst repetitive transcranial magnetic stimulation (rTMS). To this end, one continuous train of theta burst rTMS was applied over the right PPC in 12 healthy subjects prior to a visual exploration task where colour photographs of real-life scenes were presented on a computer screen. In a control experiment, stimulation was also applied over the vertex. Eye movements were measured, and the distribution of visual fixations in the left and right halves of the screen was analysed. In comparison to the performance of 28 control subjects without stimulation, theta burst rTMS over the right PPC, but not the vertex, significantly decreased cumulative fixation duration in the left screen-half and significantly increased cumulative fixation duration in the right screen-half for a time period of 30 min. These results suggest that theta burst rTMS is a reliable method of inducing transient neglect-like visual exploration behaviour.
Resumo:
In the memory antisaccade task, subjects are instructed to look at an imaginary point precisely at the opposite side of a peripheral visual stimulus presented short time previously. To perform this task accurately, the visual vector, i.e., the distance between a central fixation point and the peripheral stimulus, must be inverted from one visual hemifield to the other. Recent data in humans and monkeys suggest that the posterior parietal cortex (PPC) might be critically involved in the process of visual vector inversion. In the present study, we investigated the temporal dynamics of visual vector inversion in the human PPC by using transcranial magnetic stimulation (TMS). In six healthy subjects, single pulse TMS was applied over the right PPC during a memory antisaccade task at four different time intervals: 100 ms, 217 ms, 333 ms, or 450 ms after target onset. The results indicate that for rightward antisaccades, i.e., when the visual target was presented in the left screen-half, TMS had a significant effect on saccade gain when applied 100 ms after target onset, but not later. For leftward antisaccades, i.e., when the visual target was presented in the right screen-half, a significant TMS effect on gain was found for the 333 ms and 450 ms conditions, but not for the earlier ones. This double dissociation of saccade gain suggests that the initial process of vector inversion can be disrupted 100 ms after onset of the visual stimulus and that TMS interfered with motor saccade planning based on an inversed vector signal at 333 ms and 450 ms after stimulus onset.
Resumo:
BACKGROUND AND PURPOSE: Visual neglect is a frequent disability in stroke and adversely affects mobility, discharge destination, and length of hospital stay. It is assumed that its severity is enhanced by a released interhemispheric inhibition from the unaffected toward the affected hemisphere. Continuous theta burst transcranial magnetic stimulation (TBS) is a new inhibitory brain stimulation protocol which has the potential to induce behavioral effects outlasting stimulation. We aimed to test whether parietal TBS over the unaffected hemisphere can induce a long-lasting improvement of visual neglect by reducing the interhemispheric inhibition. METHODS: Eleven patients with left-sided visual neglect attributable to right hemispheric stroke were tested in a visual perception task. To evaluate the specificity of the TBS effect, 3 conditions were tested: 2 TBS trains over the left contralesional posterior parietal cortex, 2 trains of sham stimulation over the contralesional posterior parietal cortex, and a control condition without any intervention. To evaluate the lifetime of repeated trains of TBS in 1 session, 4 trains were applied over the contralesional posterior parietal cortex. RESULTS: Two TBS trains significantly increased the number of perceived left visual targets for up to 8 hours as compared to baseline. No significant improvement was found with sham stimulation or in the control condition without any intervention. The application of 4 TBS trains significantly increased the number of perceived left targets up to 32 hours. CONCLUSIONS: The new approach of repeating TBS at the same day may be promising for therapy of neglect.
Resumo:
In this paper we compare the performance of two image classification paradigms (object- and pixel-based) for creating a land cover map of Asmara, the capital of Eritrea and its surrounding areas using a Landsat ETM+ imagery acquired in January 2000. The image classification methods used were maximum likelihood for the pixel-based approach and Bhattacharyya distance for the object-oriented approach available in, respectively, ArcGIS and SPRING software packages. Advantages and limitations of both approaches are presented and discussed. Classifications outputs were assessed using overall accuracy and Kappa indices. Pixel- and object-based classification methods result in an overall accuracy of 78% and 85%, respectively. The Kappa coefficient for pixel- and object-based approaches was 0.74 and 0.82, respectively. Although pixel-based approach is the most commonly used method, assessment and visual interpretation of the results clearly reveal that the object-oriented approach has advantages for this specific case-study.
Resumo:
A large body of research analyzes the runtime execution of a system to extract abstract behavioral views. Those approaches primarily analyze control flow by tracing method execution events or they analyze object graphs of heap snapshots. However, they do not capture how objects are passed through the system at runtime. We refer to the exchange of objects as the object flow, and we claim that object flow is necessary to analyze if we are to understand the runtime of an object-oriented application. We propose and detail Object Flow Analysis, a novel dynamic analysis technique that takes this new information into account. To evaluate its usefulness, we present a visual approach that allows a developer to study classes and components in terms of how they exchange objects at runtime. We illustrate our approach on three case studies.
Resumo:
Reports on left-lateralized abnormalities of component P300 of event-related brain potentials (ERP) in schizophrenics typically did not vary task difficulties. We collected 16-channel ERP in 13 chronic, medicated schizophrenics (25±4.9 years) and 13 matched controls in a visual P300 paradigm with targets defined by one or two stimulus dimensions (C1: color; C2: color and tilt); subjects key-pressed to targets. The mean target-ERP map landscapes were assessed numerically by the locations of the positive and negative map-area centroids. The centroids' time-space trajectories were searched for the P300 microstate landscape defined by the positive centroid posterior of the negative centroid. At P300 microstate centre latencies in C1, patients' maps tended to a right shift of the positive centroid (p<0.10); in C2 the anterior centroid was more posterior (p<0.07) and the posterior (positive) centroid more anterior (p<0.03), but without leftright difference. Duration of P300 microstate in C2 was shorter in patients (232 vs 347 ms;p<0.03) and the latency of maximal strength of P300 microstate increased significantly in patients (C1: 459 vs 376 ms; C2: 585 vs 525 ms). In summary only the one-dimensional task C1 supported left-sided abnormalities; the two-dimensional task C2 produced abnormal P300 microstate map landscapes in schizophrenics, but no abnormal lateralization. Thus, information processing involved clearly aberrant neural populations in schizophrenics, different when processing one and two stimulus dimensions. The lack of lateralization in the two-dimensional task supported the view that left-temporal abnormality in schizophrenics is only one of several task-dependent aberrations.
Resumo:
Prompted reports of recall of spontaneous, conscious experiences were collected in a no-input, no-task, no-response paradigm (30 random prompts to each of 13 healthy volunteers). The mentation reports were classified into visual imagery and abstract thought. Spontaneous 19-channel brain electric activity (EEG) was continuously recorded, viewed as series of momentary spatial distributions (maps) of the brain electric field and segmented into microstates, i.e. into time segments characterized by quasi-stable landscapes of potential distribution maps which showed varying durations in the sub-second range. Microstate segmentation used a data-driven strategy. Different microstates, i.e. different brain electric landscapes must have been generated by activity of different neural assemblies and therefore are hypothesized to constitute different functions. The two types of reported experiences were associated with significantly different microstates (mean duration 121 ms) immediately preceding the prompts; these microstates showed, across subjects, for abstract thought (compared to visual imagery) a shift of the electric gravity center to the left and a clockwise rotation of the field axis. Contrariwise, the microstates 2 s before the prompt did not differ between the two types of experiences. The results support the hypothesis that different microstates of the brain as recognized in its electric field implement different conscious, reportable mind states, i.e. different classes (types) of thoughts (mentations); thus, the microstates might be candidates for the `atoms of thought'.
Resumo:
Purpose: Most recently light and mobile reading devices with high display resolutions have become popular and they may open new possibilities for reading applications in education, business and the private sector. The ability to adapt font size may also open new reading opportunities for people with impaired or low vision. Based on their display technology two major groups of reading devices can be distinguished. One type, predominantly found in dedicated e-book readers, uses electronic paper also known as e-Ink. Other devices, mostly multifunction tablet-PCs, are equipped with backlit LCD displays. While it has long been accepted that reading on electronic displays is slow and associated with visual fatigue, this new generation is explicitly promoted for reading. Since research has shown that, compared to reading on electronic displays, reading on paper is faster and requires fewer fixations per line, one would expect differential effects when comparing reading behaviour on e-Ink and LCD. In the present study we therefore compared experimentally how these two display types are suited for reading over an extended period of time. Methods: Participants read for several hours on either e-Ink or LCD, and different measures of reading behaviour and visual strain were regularly recorded. These dependent measures included subjective (visual) fatigue, a letter search task, reading speed, oculomotor behaviour and the pupillary light reflex. Results: Results suggested that reading on the two display types is very similar in terms of both subjective and objective measures. Conclusions: It is not the technology itself, but rather the image quality that seems crucial for reading. Compared to the visual display units used in the previous few decades, these more recent electronic displays allow for good and comfortable reading, even for extended periods of time.
Resumo:
Identifying a human body stimulus involves mentally rotating an embodied spatial representation of one's body (motoric embodiment) and projecting it onto the stimulus (spatial embodiment). Interactions between these two processes (spatial and motoric embodiment) may thus reveal cues about the underlying reference frames. The allocentric visual reference frame, and hence the perceived orientation of the body relative to gravity, was modulated using the York Tumbling Room, a fully furnished cubic room with strong directional cues that can be rotated around a participant's roll axis. Sixteen participants were seated upright (relative to gravity) in the Tumbling Room and made judgments about body and hand stimuli that were presented in the frontal plane at orientations of 0°, 90°, 180° (upside down), or 270° relative to them. Body stimuli have an intrinsic visual polarity relative to the environment whereas hands do not. Simultaneously the room was oriented 0°, 90°, 180° (upside down), or 270° relative to gravity resulting in sixteen combinations of orientations. Body stimuli were more accurately identified when room and body stimuli were aligned. However, such congruency did not facilitate identifying hand stimuli. We conclude that static allocentric visual cues can affect embodiment and hence performance in an egocentric mental transformation task. Reaction times to identify either hands or bodies showed no dependence on room orientation.
Resumo:
By means of fixed-links modeling, the present study identified different processes of visual short-term memory (VSTM) functioning and investigated how these processes are related to intelligence. We conducted an experiment where the participants were presented with a color change detection task. Task complexity was manipulated through varying the number of presented stimuli (set size). We collected hit rate and reaction time (RT) as indicators for the amount of information retained in VSTM and speed of VSTM scanning, respectively. Due to the impurity of these measures, however, the variability in hit rate and RT was assumed to consist not only of genuine variance due to individual differences in VSTM retention and VSTM scanning but also of other, non-experimental portions of variance. Therefore, we identified two qualitatively different types of components for both hit rate and RT: (1) non-experimental components representing processes that remained constant irrespective of set size and (2) experimental components reflecting processes that increased as a function of set size. For RT, intelligence was negatively associated with the non-experimental components, but was unrelated to the experimental components assumed to represent variability in VSTM scanning speed. This finding indicates that individual differences in basic processing speed, rather than in speed of VSTM scanning, differentiates between high- and low-intelligent individuals. For hit rate, the experimental component constituting individual differences in VSTM retention was positively related to intelligence. The non-experimental components of hit rate, representing variability in basal processes, however, were not associated with intelligence. By decomposing VSTM functioning into non-experimental and experimental components, significant associations with intelligence were revealed that otherwise might have been obscured.
Resumo:
Parkinson's disease, typically thought of as a movement disorder, is increasingly recognized as causing cognitive impairment and dementia. Eye movement abnormalities are also described, including impairment of rapid eye movements (saccades) and the fixations interspersed between them. Such movements are under the influence of cortical and subcortical networks commonly targeted by the neurodegeneration seen in Parkinson's disease and, as such, may provide a marker for cognitive decline. This study examined the error rates and visual exploration strategies of subjects with Parkinson's disease, with and without cognitive impairment, whilst performing a battery of visuo-cognitive tasks. Error rates were significantly higher in those Parkinson's disease groups with either mild cognitive impairment (P = 0.001) or dementia (P < 0.001), than in cognitively normal subjects with Parkinson's disease. When compared with cognitively normal subjects with Parkinson's disease, exploration strategy, as measured by a number of eye tracking variables, was least efficient in the dementia group but was also affected in those subjects with Parkinson's disease with mild cognitive impairment. When compared with control subjects and cognitively normal subjects with Parkinson's disease, saccade amplitudes were significantly reduced in the groups with mild cognitive impairment or dementia. Fixation duration was longer in all Parkinson's disease groups compared with healthy control subjects but was longest for cognitively impaired Parkinson's disease groups. The strongest predictor of average fixation duration was disease severity. Analysing only data from the most complex task, with the highest error rates, both cognitive impairment and disease severity contributed to a predictive model for fixation duration [F(2,76) = 12.52, P ≤ 0.001], but medication dose did not (r = 0.18, n = 78, P = 0.098, not significant). This study highlights the potential use of exploration strategy measures as a marker of cognitive decline in Parkinson's disease and reveals the efficiency by which fixations and saccades are deployed in the build-up to a cognitive response, rather than merely focusing on the outcome itself. The prolongation of fixation duration, present to a small but significant degree even in cognitively normal subjects with Parkinson's disease, suggests a disease-specific impact on the networks directing visual exploration, although the study also highlights the multi-factorial nature of changes in exploration and the significant impact of cognitive decline on efficiency of visual search.
Resumo:
OBJECTIVE To quantify visual discrimination, space-motion, and object-form perception in patients with Parkinson disease dementia (PDD), dementia with Lewy bodies (DLB), and Alzheimer disease (AD). METHODS The authors used a cross-sectional study to compare three demented groups matched for overall dementia severity (PDD: n = 24; DLB: n = 20; AD: n = 23) and two age-, sex-, and education-matched control groups (PD: n = 24, normal controls [NC]: n = 25). RESULTS Visual perception was globally more impaired in PDD than in nondemented controls (NC, PD), but was not different from DLB. Compared to AD, PDD patients tended to perform worse in all perceptual scores. Visual perception of patients with PDD/DLB and visual hallucinations was significantly worse than in patients without hallucinations. CONCLUSIONS Parkinson disease dementia (PDD) is associated with profound visuoperceptual impairments similar to dementia with Lewy bodies (DLB) but different from Alzheimer disease. These findings are consistent with previous neuroimaging studies reporting hypoactivity in cortical areas involved in visual processing in PDD and DLB.