32 resultados para Virtual reality in architecture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Crossing a street can be a very difficult task for older pedestrians. With increased age and potential cognitive decline, older people take the decision to cross a street primarily based on vehicles' distance, and not on their speed. Furthermore, older pedestrians tend to overestimate their own walking speed, and could not adapt it according to the traffic conditions. Pedestrians' behavior is often tested using virtual reality. Virtual reality presents the advantage of being safe, cost-effective, and allows using standardized test conditions. METHODS: This paper describes an observational study with older and younger adults. Street crossing behavior was investigated in 18 healthy, younger and 18 older subjects by using a virtual reality setting. The aim of the study was to measure behavioral data (such as eye and head movements) and to assess how the two age groups differ in terms of number of safe street crossings, virtual crashes, and missed street crossing opportunities. Street crossing behavior, eye and head movements, in older and younger subjects, were compared with non-parametric tests. RESULTS: The results showed that younger pedestrians behaved in a more secure manner while crossing a street, as compared to older people. The eye and head movements analysis revealed that older people looked more at the ground and less at the other side of the street to cross. CONCLUSIONS: The less secure behavior in street crossing found in older pedestrians could be explained by their reduced cognitive and visual abilities, which, in turn, resulted in difficulties in the decision-making process, especially under time pressure. Decisions to cross a street are based on the distance of the oncoming cars, rather than their speed, for both groups. Older pedestrians look more at their feet, probably because of their need of more time to plan precise stepping movement and, in turn, pay less attention to the traffic. This might help to set up guidelines for improving senior pedestrians' safety, in terms of speed limits, road design, and mixed physical-cognitive trainings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Patients with downbeat nystagmus syndrome suffer from oscillopsia, which leads to an unstable visual perception and therefore impaired visual acuity. The aim of this study was to use real-time computer-based visual feedback to compensate for the destabilizing slow phase eye movements. METHODS The patients were sitting in front of a computer screen with the head fixed on a chin rest. The eye movements were recorded by an eye tracking system (EyeSeeCam®). We tested the visual acuity with a fixed Landolt C (static) and during real-time feedback driven condition (dynamic) in gaze straight ahead and (20°) sideward gaze. In the dynamic condition, the Landolt C moved according to the slow phase eye velocity of the downbeat nystagmus. The Shapiro-Wilk test was used to test for normal distribution and one-way ANOVA for comparison. RESULTS Ten patients with downbeat nystagmus were included in the study. Median age was 76 years and the median duration of symptoms was 6.3 years (SD +/- 3.1y). The mean slow phase velocity was moderate during gaze straight ahead (1.44°/s, SD +/- 1.18°/s) and increased significantly in sideward gaze (mean left 3.36°/s; right 3.58°/s). In gaze straight ahead, we found no difference between the static and feedback driven condition. In sideward gaze, visual acuity improved in five out of ten subjects during the feedback-driven condition (p = 0.043). CONCLUSIONS This study provides proof of concept that non-invasive real-time computer-based visual feedback compensates for the SPV in DBN. Therefore, real-time visual feedback may be a promising aid for patients suffering from oscillopsia and impaired text reading on screen. Recent technological advances in the area of virtual reality displays might soon render this approach feasible in fully mobile settings.