72 resultados para Vehicle Interior Controls and Handles.
Resumo:
BACKGROUND: Galectins are involved at different stages in inflammation. Galectin-3, although mostly described as proinflammatory, can also act as an immunomodulator by inducing apoptosis in T cells. The present study aims to determine galectin-3 expression in the normal and inflamed intestinal mucosa and to define its role in T cell activity. MATERIALS AND METHODS: Galectin-3 was detected by quantitative polymerase chain reaction with total RNA from endoscopic biopsies and by immunohistochemistry. Biopsies and peripheral blood mononuclear cells (PBMC) were stimulated in vitro and were used to assess the functional consequences of inhibition or exogenous addition of galectin-3. RESULTS: Galectin-3 is expressed at comparable levels in controls and inflammatory bowel disease (IBD) patients in remission. In the normal mucosa, galectin-3 protein was mainly observed in differentiated enterocytes, preferentially at the basolateral side. However, galectin-3 was significantly downregulated in inflamed biopsies from IBD patients. Ex vivo stimulation of uninflamed biopsies with tumor necrosis factor led to similar galectin-3 messenger RNA downregulation as in vivo. When peripheral blood mononuclear cells (PBMC) were analyzed, galectin-3 was mainly produced by monocytes. Upon mitogen stimulation, we observed increased proliferation and decreased activation-induced cell death of peripheral blood T cells in the presence of galectin-3-specific small interfering RNA. In contrast, exogenous addition of recombinant galectin-3 led to reduced proliferation of mitogen-stimulated peripheral blood T cells. CONCLUSIONS: Our results suggest that downregulation of epithelial galectin-3 in the inflamed mucosa reflects a normal immunological consequence, whereas under noninflammatory conditions, its constitutive expression may help to prevent inappropriate immune responses against commensal bacteria or food compounds. Therefore, galectin-3 may prove valuable for manipulating disease activity.
Serological and DNA-based evaluation of Chlamydia pneumoniae infection in inflammatory bowel disease
Resumo:
OBJECTIVES: Chlamydia has been associated with autoimmune diseases, but a link between chlamydial infection and the aetiopathogenesis of inflammatory bowel disease (IBD) remains controversial. In this study we assessed the relationship between chlamydial infection and IBD, as evidenced by serological measurement and DNA analysis of mucosal biopsy specimens. PATIENTS AND METHODS: The sera of 78 patients with Crohn's disease (CD), 24 patients with ulcerative colitis (UC), 73 healthy family members, and 20 healthy controls were tested for anti-C. pneumoniae IgG titres. A subgroup consisting of 13 UC and 39 CD patients was screened for the presence of chlamydial DNA on 42 inflamed versus 30 non-inflamed biopsy specimens and for mutations of their NOD2/CARD15 gene. RESULTS: Anti-C. pneumoniae IgG antibodies were found in the sera of 32 (41%) patients with CD, 11 (46%) patients with UC, 35 (48%) of unaffected family members, and nine (45%) unrelated healthy controls. Thirty-five percent of the control, 18% CD and 24% UC biopsy specimens contained C. pneumoniae DNA. In CD, however, C. pneumoniae DNA was significantly more frequently found in inflamed (27%) versus non-inflamed (8%) biopsy specimens (P < 0.05, Fisher's exact test). The frequencies of NOD2/CARD15 mutations were 33% for CD patients with C. pneumoniae DNA compared to 47% for CD patients without C. pneumoniae DNA. CONCLUSION: We found no marked differences in respect to anti-C. pneumoniae serum IgG or C. pneumoniae DNA between healthy controls and patients with IBD. However, in CD patients, inflamed tissue specimens contained significantly more likely C. pneumoniae DNA compared with biopsies from unaffected areas. Thus C. pneumoniae is unlikely to be of pathogenic importance in IBD while it may still influence local clinical manifestations.
Resumo:
Chronic renal allograft rejection is characterized by alterations in the extracellular matrix compartment and in the proliferation of various cell types. These features are controlled, in part by the metzincin superfamily of metallo-endopeptidases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase (ADAM) and meprin. Therefore, we investigated the regulation of metzincins in the established Fisher to Lewis rat kidney transplant model. Studies were performed using frozen homogenates and paraffin sections of rat kidneys at day 0 (healthy controls) and during periods of chronic rejection at day +60 and day +100 following transplantation. The messenger RNA (mRNA) expression was examined by Affymetrix Rat Expression Array 230A GeneChip and by real-time Taqman polymerase chain reaction analyses. Protein expression was studied by zymography, Western blot analyses, and immunohistology. mRNA levels of MMPs (MMP-2/-11/-12/-14), of their inhibitors (tissue inhibitors of metalloproteinase (TIMP)-1/-2), ADAM-17 and transforming growth factor (TGF)-beta1 significantly increased during chronic renal allograft rejection. MMP-2 activity and immunohistological staining were augmented accordingly. The most important mRNA elevation was observed in the case of MMP-12. As expected, Western blot analyses also demonstrated increased production of MMP-12, MMP-14, and TIMP-2 (in the latter two cases as individual proteins and as complexes). In contrast, mRNA levels of MMP-9/-24 and meprin alpha/beta had decreased. Accordingly, MMP-9 protein levels and meprin alpha/beta synthesis and activity were downregulated significantly. Members of metzincin families (MMP, ADAM, and meprin) and of TIMPs are differentially regulated in chronic renal allograft rejection. Thus, an altered pattern of metzincins may represent novel diagnostic markers and possibly may provide novel targets for future therapeutic interventions.
Resumo:
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases that can occur spontaneously or can be caused by infection or mutations within the prion protein gene PRNP. Nonsynonymous DNA polymorphisms within the PRNP gene have been shown to influence susceptibility/resistance to infection in sheep and humans. Analysis of DNA polymorphisms within the core promoter region of the PRNP gene in four major German bovine breeds resulted in the identification of both SNPs and insertion/deletion (indel) polymorphisms. Comparative genotyping of both controls and animals that tested positive for bovine spongiform encephalopathy (BSE) revealed a significantly different distribution of two indel polymorphisms and two SNPs within Braunvieh animals, suggesting an association of these polymorphisms with BSE susceptibility. The functional relevance of these polymorphisms was analyzed using reporter gene constructs in neuronal cells. A specific haplotype near exon 1 was identified that exhibited a significantly lower expression level. Genotyping of nine polymorphisms within the promoter region and haplotype calculation revealed that the haplotype associated with the lowest expression level was underrepresented in the BSE group of all breeds compared to control animals, indicating a correlation of reduced PRNP expression and increased resistance to BSE.
Resumo:
Chronic alcohol consumption is a major risk factor for the development of chronic pancreatitis. However, chronic pancreatitis occurs only in a minority of heavy drinkers. This variability may be due to yet unidentified genetic factors. Several enzymes involved in the degradation of reactive oxidants and xenobiotics, such as glutathione-S-transferase P1 (GSTP1) and manganese-superoxide dismutase (MnSOD) reveal functional polymorphisms that affect the antioxidative capacity and may therefore modulate the development of chronic pancreatitis and long-term complications like endocrine and exocrine pancreatic insufficiency. Two functional polymorphisms of the MnSOD and the GSTP1 gene were assessed by polymerase chain reaction and restriction fragment length polymorphism in 165 patients with chronic alcoholic pancreatitis, 140 alcoholics without evidence of pancreatic disease and 160 healthy control subjects. The distribution of GSTP1 and MnSOD genotypes were in Hardy-Weinberg equilibrium in the total cohort. Genotype and allele frequencies for both genes were not statistically different between the three groups. Although genotype MnSOD Ala/Val was seemingly associated with the presence of exocrine pancreatic insufficiency, this subgroup was too small and the association statistically underpowered. None of the tested genotypes affected the development of endocrine pancreatic insufficiency. Polymorphisms of MnSOD and GSTP1 are not associated with chronic alcoholic pancreatitis. The present data emphasize the need for stringently designed candidate gene association studies with well-characterized cases and controls and sufficient statistical power to exclude chance observations.
Resumo:
The hypothesis of a functional disconnection of neuro-cognitive networks in patients with mild cognitive impairment (MCI) and Alzheimer Dementia was investigated using baseline resting EEG data. EEG databases from New York (264 subjects) and Stockholm (155 subjects), including healthy controls and patients with varying degrees of cognitive decline or Alzheimer Dementia were analyzed using Global Field Synchronization (GFS), a novel measure of global EEG synchronization. GFS reflects the global amount of phase-locked activity at a given frequency by a single number; it is independent of the recording reference and of implicit source models. Patients showed decreased GFS values in Alpha, Beta, and Gamma frequency bands, and increased GFS values in the Delta band, confirming the hypothesized disconnection syndrome. The results are discussed within the framework of current knowledge about the functional significance of the affected frequency bands.
Resumo:
Chemokines are small, secreted proteins that orchestrate the migration of cells, which are involved in immune defence, immune surveillance and haematopoiesis. However, chemokines are also implicated in the pathology of various inflammatory diseases, cancers and HIV. The chemokine system is considerably large and has a redundancy in the repertoire of its inflammatory mediators. Therefore, strict regulation of chemokine activity is crucial. Chemokines are the substrate for various proteases including the serine protease CD26/dipeptidyl-peptidase IV and matrix metalloproteinases. Regulation by proteolytic cleavage controls and fine-tunes chemokine function by either enhancing or reducing its chemotactic activity or receptor selectivity. Often chemokines and the proteases that regulate them are produced in the same microenvironment and expression of both may be simultaneously induced by a common stimulus enabling the rapid regulation of chemokine activity. The overall impact of cleaved chemokines in cellular responses is very complex. In this review, we will give an overview on chemokine modification and the respective chemokine modifying proteases. Furthermore, we will summarize the emerging literature describing the consequences in inflammation, haematopoiesis, cancer and HIV infection upon proteolytic chemokine processing.
Resumo:
Gamma-tocopherol (gammaT) complements alpha-tocopherol (alphaT) by trapping reactive nitrogen oxides to form a stable adduct, 5-nitro-gammaT [Christen et al., PNAS 94:3217-3222; 1997]. This observation led to the current investigation in which we studied the effects of gammaT supplementation on plasma and tissue vitamin C, vitamin E, and protein nitration before and after zymosan-induced acute peritonitis. Male Fischer 344 rats were fed for 4 weeks with either a normal chow diet with basal 32 mg alphaT/kg, or the same diet supplemented with approximately 90 mg d-gammaT/kg. Supplementation resulted in significantly higher levels of gammaT in plasma, liver, and kidney of control animals without affecting alphaT, total alphaT+gammaT or vitamin C. Intraperitoneal injection of zymosan caused a marked increase in 3-nitrotyrosine and a profound decline in vitamin C in all tissues examined. Supplementation with gammaT significantly inhibited protein nitration and ascorbate oxidation in the kidney, as indicated by the 29% and 56% reduction of kidney 3-nitrotyrosine and dehydroascorbate, respectively. Supplementation significantly attenuated inflammation-induced loss of vitamin C in the plasma (38%) and kidney (20%). Zymosan-treated animals had significantly higher plasma and tissue gammaT than nontreated pair-fed controls, and the elevation of gammaT was strongly accentuated by the supplementation. In contrast, alphaT did not significantly change in response to zymosan treatment. In untreated control animals, gammaT supplementation lowered basal levels of 3-nitrotyrosine in the kidney and buffered the starvation-induced changes in vitamin C in all tissues examined. Our study provides the first in vivo evidence that in rats with high basal amounts of alphaT, a moderate gammaT supplementation attenuates inflammation-mediated damage, and spares vitamin C during starvation-induced stress without affecting alphaT.
Resumo:
1H-magnetic resonance spectroscopy ((1)H-MRS) of deoxymyoglobin (DMb) provides a means to noninvasively monitor the oxygenation state of human skeletal muscle in work and disease. As shown in this work, it also offers the opportunity to measure the absolute tissue content of DMb, the basic oxygen consumption of resting muscle, and the reperfusion characteristics after release of a pressure cuff. The methodology to determine these tissue properties simultaneously at two positions along the calf is presented. The obtained values are in agreement with invasive determinations. The reproducibility of the (1)H-MRS measurements is established for healthy controls and patients with peripheral arterial disease (PAD). A location dependence in axial direction, as well as differences between controls and patients are demonstrated for all parameters. The reoxygenation time in particular is expected to provide a means to quantitatively monitor therapies aimed at improving muscular perfusion in these patients.
Resumo:
OBJECT: The effect of normobaric hyperoxia (fraction of inspired O2 [FIO2] concentration 100%) in the treatment of patients with traumatic brain injury (TBI) remains controversial. The aim of this study was to investigate the effects of normobaric hyperoxia on five cerebral metabolic indices, which have putative prognostic significance following TBI in humans. METHODS: At two independent neurointensive care units, the authors performed a prospective study of 52 patients with severe TBI who were treated for 24 hours with 100% FIO2, starting within 6 hours of admission. Data for these patients were compared with data for a cohort of 112 patients who were treated in the past; patients in the historical control group matched the patients in our study according to their Glasgow Coma Scale scores after resuscitation and their intracranial pressure within the first 8 hours after admission. Patients were monitored with the aid of intracerebral microdialysis and tissue O2 probes. Normobaric hyperoxia treatment resulted in a significant improvement in biochemical markers in the brain compared with the baseline measures for patients treated in our study (patients acting as their own controls) and also compared with findings from the historical control group. In the dialysate the glucose levels increased (369.02 +/- 20.1 micromol/L in the control group and 466.9 +/- 20.39 micromol/L in the 100% O2 group, p = 0.001), whereas the glutamate and lactate levels significantly decreased (p < 0.005). There were also reductions in the lactate/glucose and lactate/pyruvate ratios. Intracranial pressure in the treatment group was reduced significantly both during and after hyperoxia treatment compared with the control groups (15.03 +/- 0.8 mm Hg in the control group and 12.13 +/- 0.75 mm Hg in the 100% O2 group, p < 0.005) with no changes in cerebral perfusion pressure. Outcomes of the patients in the treatment group improved. CONCLUSIONS: The results of the study support the hypothesis that normobaric hyperoxia in patients with severe TBI improves the indices of brain oxidative metabolism. Based on these data further mechanistic studies and a prospective randomized controlled trial are warranted.
Resumo:
ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol and phospholipids from cells to lipid-poor HDL and maintains cellular lipid homeostasis. Impaired ABCA1 function plays a role in lipid disorders, cardiovascular disease, atherosclerosis, and metabolic disorders. Despite the clinical importance of ABCA1, no method is available for quantifying ABCA1 protein. We developed a sensitive indirect competitive ELISA for measuring ABCA1 protein in human tissues using a commercial ABCA1 peptide and a polyclonal anti-ABCA1 antibody. The ELISA has a detection limit of 8 ng/well (0.08 mg/l) with a working range of 9-1000 ng/well (0.09-10 mg/l). Intra- and interassay coefficient of variations (CVs) were 6.4% and 9.6%, respectively. Good linearity (r = 0.97-0.99) was recorded in serial dilutions of human arterial and placental crude membrane preparations, and fibroblast lysates. The ELISA measurements for ABCA1 quantification in reference arterial tissues corresponded well with immunoblot analysis. The assay performance and clinical utility was evaluated with arterial tissues obtained from 15 controls and 44 patients with atherosclerotic plaques. ABCA1 protein concentrations in tissue lysates were significantly lower in patients (n = 24) as compared with controls (n = 5; 9.37 +/- 0.82 vs. 17.03 +/- 4.25 microg/g tissue; P < 0.01). The novel ELISA enables the quantification of ABCA1 protein in human tissues and confirms previous semiquantitative immunoblot results.
Resumo:
To evaluate strategies used to select cases and controls and how reported odds ratios are interpreted, the authors examined 150 case-control studies published in leading general medicine, epidemiology, and clinical specialist journals from 2001 to 2007. Most of the studies (125/150; 83%) were based on incident cases; among these, the source population was mostly dynamic (102/125; 82%). A minority (23/125; 18%) sampled from a fixed cohort. Among studies with incident cases, 105 (84%) could interpret the odds ratio as a rate ratio. Fifty-seven (46% of 125) required the source population to be stable for such interpretation, while the remaining 48 (38% of 125) did not need any assumptions because of matching on time or concurrent sampling. Another 17 (14% of 125) studies with incident cases could interpret the odds ratio as a risk ratio, with 16 of them requiring the rare disease assumption for this interpretation. The rare disease assumption was discussed in 4 studies but was not relevant to any of them. No investigators mentioned the need for a stable population. The authors conclude that in current case-control research, a stable exposure distribution is much more frequently needed to interpret odds ratios than the rare disease assumption. At present, investigators conducting case-control studies rarely discuss what their odds ratios estimate.
Resumo:
BACKGROUND: Chronic alcohol consumption is a risk factor for colorectal cancer. Animal experiments as well as genetic linkage studies in Japanese individuals with inactive acetaldehyde dehydrogenase leading to elevated acetaldehyde concentrations following ethanol ingestion support the hypothesis that acetaldehyde may be responsible for this carcinogenic effect of alcohol. In Caucasians, a polymorphism of alcohol dehydrogenase 1C (ADH1C) exists resulting in different acetaldehyde concentrations following ethanol oxidation. METHODS: To evaluate whether the association between alcohol consumption and colorectal tumor development is modified by ADH1C polymorphism, we recruited 173 individuals with colorectal tumors diagnosed by colonoscopy and 788 control individuals without colorectal tumors. Genotyping was performed using genomic DNA extracted from whole blood followed by polymerase chain reaction. RESULTS: Genotype ADH1C*1/1 was more frequent in patients with alcohol-associated colorectal neoplasia compared to patients without cancers in the multivariate model controlling for age, gender, and alcohol intake (odds ratio = 1.674, 95% confidence interval = 1.110-2.524, 2-sided p from Wald test = 0.0139). In addition, the joint test of the genetic effect and interaction between ADH1C genotype and alcohol intake (2-sided p = 0.0007) indicated that the difference in ADH1C*1 polymorphisms between controls and colorectal neoplasia is strongly influenced by the alcohol consumption and that only individuals drinking more than 30 g ethanol per day with the genotype ADH1C*1/1 had an increased risk for colorectal tumors. CONCLUSIONS: These data identify ADH1C homozygosity as a genetic risk marker for colorectal tumors in individuals consuming more than 30 g alcohol per day and emphasize the role of acetaldehyde as a carcinogenic agent in alcohol-related colorectal carcinogenesis.
Resumo:
The evolution of subjective sleep and sleep electroencephalogram (EEG) after hemispheric stroke have been rarely studied and the relationship of sleep variables to stroke outcome is essentially unknown. We studied 27 patients with first hemispheric ischaemic stroke and no sleep apnoea in the acute (1-8 days), subacute (9-35 days), and chronic phase (5-24 months) after stroke. Clinical assessment included estimated sleep time per 24 h (EST) and Epworth sleepiness score (ESS) before stroke, as well as EST, ESS and clinical outcome after stroke. Sleep EEG data from stroke patients were compared with data from 11 hospitalized controls and published norms. Changes in EST (>2 h, 38% of patients) and ESS (>3 points, 26%) were frequent but correlated poorly with sleep EEG changes. In the chronic phase no significant differences in sleep EEG between controls and patients were found. High sleep efficiency and low wakefulness after sleep onset in the acute phase were associated with a good long-term outcome. These two sleep EEG variables improved significantly from the acute to the subacute and chronic phase. In conclusion, hemispheric strokes can cause insomnia, hypersomnia or changes in sleep needs but only rarely persisting sleep EEG abnormalities. High sleep EEG continuity in the acute phase of stroke heralds a good clinical outcome.
Resumo:
Multi-parametric and quantitative magnetic resonance imaging (MRI) techniques have come into the focus of interest, both as a research and diagnostic modality for the evaluation of patients suffering from mild cognitive decline and overt dementia. In this study we address the question, if disease related quantitative magnetization transfer effects (qMT) within the intra- and extracellular matrices of the hippocampus may aid in the differentiation between clinically diagnosed patients with Alzheimer disease (AD), patients with mild cognitive impairment (MCI) and healthy controls. We evaluated 22 patients with AD (n=12) and MCI (n=10) and 22 healthy elderly (n=12) and younger (n=10) controls with multi-parametric MRI. Neuropsychological testing was performed in patients and elderly controls (n=34). In order to quantify the qMT effects, the absorption spectrum was sampled at relevant off-resonance frequencies. The qMT-parameters were calculated according to a two-pool spin-bath model including the T1- and T2 relaxation parameters of the free pool, determined in separate experiments. Histograms (fixed bin-size) of the normalized qMT-parameter values (z-scores) within the anterior and posterior hippocampus (hippocampal head and body) were subjected to a fuzzy-c-means classification algorithm with downstreamed PCA projection. The within-cluster sums of point-to-centroid distances were used to examine the effects of qMT- and diffusion anisotropy parameters on the discrimination of healthy volunteers, patients with Alzheimer and MCIs. The qMT-parameters T2(r) (T2 of the restricted pool) and F (fractional pool size) differentiated between the three groups (control, MCI and AD) in the anterior hippocampus. In our cohort, the MT ratio, as proposed in previous reports, did not differentiate between MCI and AD or healthy controls and MCI, but between healthy controls and AD.