47 resultados para Vascular smooth muscle cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient receptor potential channel (TRP) family comprises at least 28 genes in the human genome. These channels are widely expressed in many different tissues, including those of the cardiovascular system. The transient receptor potential channel melastatin 4 (TRPM4) is a Ca(2+)-activated non-specific cationic channel, which is impermeable to Ca(2+). TRPM4 is expressed in many cells of the cardiovascular system, such as cardiac cells of the conduction pathway and arterial and venous smooth muscle cells. This review article summarizes the recently described roles of TRPM4 in normal physiology and in various disease states. Genetic variants in the human gene TRPM4 have been linked to several cardiac conduction disorders. TRPM4 has also been proposed to play a crucial role in secondary hemorrhage following spinal cord injuries. Spontaneously hypertensive rats with cardiac hypertrophy were shown to over-express the cardiac TRPM4 channel. Recent studies suggest that TRPM4 plays an important role in cardiovascular physiology and disease, even if most of the molecular and cellular mechanisms have yet to be elucidated. We conclude this review article with a brief overview of the compounds that have been shown to either inhibit or activate TRPM4 under experimental conditions. Based on recent findings, the TRPM4 channel can be proposed as a future target for the pharmacological treatment of cardiovascular disorders, such as hypertension and cardiac arrhythmias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerous studies suggest that Vitamin E has a preventive role in atherosclerosis, although the mechanism of action still remains unclear. CD36, a member of the scavenger receptor family is centrally involved in the uptake of oxidized low density proteins (oxLDLs) from bloodstream. During the atherosclerotic process, the lipid cargo of oxLDL accumulates in macrophages and smooth muscle cells, inducing their pathological conversion to foam cells. In the present study, we investigate the role of Vitamin E on CD36 expression in an in vivo model. Atherosclerosis was induced by a 2% cholesterol containing Vitamin E poor diet. Three groups of six rabbits each were studied. The first group (control) was fed on Vitamin E poor diet. The second group was fed with Vitamin E poor diet containing 2% cholesterol and the rabbits in the third group were fed with Vitamin E poor diet containing 2% cholesterol and received injections of 50 mg/kg of Vitamin E i.m. After 4 weeks, aortas were removed and analysed by light microscopy for atherosclerotic lesions. Aortic samples were analysed for CD36 mRNA expression. The aortas of cholesterol-fed rabbits showed typical atherosclerotic lesions, detected by macroscopic and microscopic examination, and exhibited an increase in CD36 mRNA expression. Vitamin E fully prevented cholesterol induced atherosclerotic lesions and the induction of CD36 mRNA expression. The effects observed at the level of CD36 scavenger receptor expression in vivo suggest an involvement of reduced foam cell formation in the protective effect of Vitamin E against atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The murine gap junction protein connexin43 (Cx43) is expressed in blood vessels, with vastly different contribution by endothelial and smooth muscle cells. We have used the Cre recombinase under control of TIE2 transcriptional elements to inactivate a floxed Cx43 gene specifically in endothelial cells. Cre-mediated deletion led to replacement of the Cx43 coding region by a lacZ reporter gene. This allowed us to monitor the extent of deletion and to visualize the endothelial expression pattern of Cx43. We found widespread endothelial expression of the Cx43 gene during embryonic development, which became restricted largely to capillaries and small vessels in all adult organs examined. Mice lacking Cx43 in endothelium did not exhibit altered blood pressure, in contrast to mice deficient in Cx40. Our results show that lacZ activation after deletion of the target gene allows us to determine the extent of cell type-specific deletion after phenotypical investigation of the same animal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although rare, stent thrombosis remains a severe complication after stent implantation owing to its high morbidity and mortality. Since the introduction of drug-eluting stents (DES), most interventional centers have noted stent thrombosis up to 3 years after implantation, a complication rarely seen with bare-metal stents. Some data from large registries and meta-analyses of randomized trials indicate a higher risk for DES thrombosis, whereas others suggest an absence of such a risk. Several factors are associated with an increased risk of stent thrombosis, including the procedure itself (stent malapposition and/or underexpansion, number of implanted stents, stent length, persistent slow coronary blood flow, and dissections), patient and lesion characteristics, stent design, and premature cessation of antiplatelet drugs. Drugs released from DES exert distinct biological effects, such as activation of signal transduction pathways and inhibition of cell proliferation. As a result, although primarily aimed at preventing vascular smooth muscle cell proliferation and migration (ie, key factors in the development of restenosis), they also impair reendothelialization, which leads to delayed arterial healing, and induce tissue factor expression, which results in a prothrombogenic environment. In the same way, polymers used to load these drugs have been associated with DES thrombosis. Finally, DES impair endothelial function of the coronary artery distal to the stent, which potentially promotes the risk of ischemia and coronary occlusion. Although several reports raise the possibility of a substantially higher risk of stent thrombosis in DES, evidence remains inconclusive; as a consequence, both large-scale and long-term clinical trials, as well as further mechanistic studies, are needed. The present review focuses on the pathophysiological mechanisms and pathological findings of stent thrombosis in DES.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Cryopreserved human blood vessels are important tools in reconstructive surgery. However, patency of frozen/thawed conduits depends largely on the freezing/thawing procedures employed. METHODS: Changes in tone were recorded on rings from human saphenous vein (SV) and used to quantify the degree of cryoinjury after different periods of exposure at room temperature to the cryomedium (Krebs-Henseleit solution containing 1.8M dimethyl sulfoxide and 0.1M sucrose) and after different cooling speeds and thawing rates following storage at -196 degrees C. RESULTS: Without freezing, exposure of SV to the cryomedium for up to 240 min did not modify contractile responses to noradrenaline (NA). Pre-freezing exposure to the cryomedium for 10-120 min attenuated significantly post-thaw maximal contractile responses to NA, endothelin-1 (ET-1) and potassium chloride (KCl) by 30-44%. Exposure for 240 min attenuated post-thaw contractile responses to all tested agents markedly by 62-67%. Optimal post-thaw contractile activity was obtained with SV frozen at about -1.2 degrees C/min and thawed slowly at about 15 degrees C/min. In these SV maximal contractile responses to NA, ET-1 and KCl amounted to 66%, 70% and 60% of that produced by unfrozen controls. Following cryostorage of veins for up to 10 years the responsiveness of vascular smooth muscle to NA was well maintained. CONCLUSION: Cryopreservation allows long-term banking of viable human SV with only minor loss in contractility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: We investigated whether the adherens junction proteins cadherin-11 and beta-catenin can be immunohistochemically visualized in the human bladder using commercially available antibodies and, if so, whether there are differences between patients with overactive bladder and refractory detrusor overactivity, and controls without lower urinary tract symptoms. MATERIALS AND METHODS: In a prospective, nonrandomized single center study 32 patients with overactive bladder and refractory detrusor overactivity, and 8 controls without lower urinary tract symptoms underwent cystoscopic bladder biopsy. Quantitative immunohistochemistry was performed. The primary outcome was cadherin-11 and beta-catenin expression in the human bladder using commercially available antibodies. The secondary outcome was differences in cadherin-11 and beta-catenin in patients with overactive bladder and refractory detrusor overactivity, and controls. RESULTS: Double labeling experiments showed co-localization of cadherin-11 and connexin 43 in the suburothelium. There was also strong co-localization of cadherin-11 and beta-catenin in the suburothelium and detrusor. Significant 2-fold up-regulation of cadherin-11 was found in the suburothelium of patients with overactive bladder compared with that in controls (p = 0.018), whereas beta-catenin was similar in the groups (p = 0.6). In the detrusor cadherin-11 and beta-catenin expression was comparable in patients with overactive bladder and controls (each p = 0.5). No difference was observed in cadherin-11 and beta-catenin in patients with overactive bladder with idiopathic vs neurogenic detrusor overactivity in the suburothelium and the detrusor (p >0.3 and >0.2, respectively). CONCLUSIONS: Using commercially available antibodies cadherin-11 and beta-catenin expression in human bladder suburothelial myofibroblasts and detrusor smooth muscle cells was noted. Cadherin-11 up-regulation in suburothelial myofibroblasts in patients with overactive bladder may be significant in overactive bladder pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New theories on the regeneration of ischemic vasculature have emerged indicating a pivotal role of adult stem cells. The aim of this study was to investigate homing and hemodynamic effects of circulating bone marrow-derived mesenchymal stem cells (MSCs) in a critically ischemic murine skin flap model. Bone marrow-derived mesenchymal stem cells (Lin(-)CD105(+)) were harvested from GFP(+)-donor mice and transferred to wildtype C57BL/6 mice. Animals receiving GFP(+)-fibroblasts served as a control group. Laser scanning confocal microscopy and intravital fluorescence microscopy were used for morphological analysis, monitoring and quantitative assessment of the stem cell homing and microhemodynamics over two weeks. Immunohistochemical staining was performed for GFP, eNOS, iNOS, VEGF. Tissue viability was analyzed by TUNEL-assay. We were able to visualize perivascular homing of MSCs in vivo. After 4 days, MSCs aligned along the vascular wall without undergoing endothelial or smooth muscle cell differentiation during the observation period. The gradual increase in arterial vascular resistance observed in the control group was abolished after MSC administration (P<0.01). At capillary level, a strong angiogenic response was found from day 7 onwards. Functional capillary density was raised in the MSC group to 197% compared to 132% in the control group (P<0.01). Paracrine expression of VEGF and iNOS, but not eNOS could be shown in the MSC group but not in the controls. In conclusion, we demonstrated that circulating bone marrow-derived MSCs home to perivascular sites in critically ischemic tissue, exhibits paracrine function and augment microhemodynamics. These effects were mediated through arteriogenesis and angiogenesis, which contributed to vascular regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relaying a signal across the plasma membrane requires functional connections between the partner molecules. Membrane microdomains or lipid rafts provide an environment in which such specific interactions can take place. The integrity of these sites is often taken for granted when signalling pathways are investigated in cell culture. However, it is well known that smooth muscle and endothelial cells undergo cytoskeletal rearrangements during monolayer culturing. Likewise affected--and with potentially important consequences for signalling events--is the organization of the plasma membrane. The expression levels of three raft markers were massively upregulated, and raft-associated 5'-nucleotidase activity increased in conventional monolayer cultures as compared with a spheroidal coculture model, shown to promote the differentiation of endothelial cells. Our data point to a shift of raft components in monolayer cultures and demonstrate potential advantages of the spheroid coculture system for investigation of raft-mediated signalling events in endothelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was motivated by the incomplete characterization of the role of vascular endothelial growth factor-A (VEGF-A) in the stressed heart in consideration of upcoming cancer treatment options challenging the natural VEGF balance in the myocardium. We tested, if the cytotoxic cancer therapy doxorubicin (Doxo) or the anti-angiogenic therapy sunitinib alters viability and VEGF signaling in primary cardiac microvascular endothelial cells (CMEC) and adult rat ventricular myocytes (ARVM). ARVM were isolated and cultured in serum-free medium. CMEC were isolated from the left ventricle and used in the second passage. Viability was measured by LDH-release and by MTT-assay, cellular respiration by high-resolution oxymetry. VEGF-A release was measured using a rat specific VEGF-A ELISA-kit. CMEC were characterized by marker proteins including CD31, von Willebrand factor, smooth muscle actin and desmin. Both Doxo and sunitinib led to a dose-dependent reduction of cell viability. Sunitinib treatment caused a significant reduction of complex I and II-dependent respiration in cardiomyocytes and the loss of mitochondrial membrane potential in CMEC. Endothelial cells up-regulated VEGF-A release after peroxide or Doxo treatment. Doxo induced HIF-1α stabilization and upregulation at clinically relevant concentrations of the cancer therapy. VEGF-A release was abrogated by the inhibition of the Erk1/2 or the MAPKp38 pathway. ARVM did not answer to Doxo-induced stress conditions by the release of VEGF-A as observed in CMEC. VEGF receptor 2 amounts were reduced by Doxo and by sunitinib in a dose-dependent manner in both CMEC and ARVM. In conclusion, these data suggest that cancer therapy with anthracyclines modulates VEGF-A release and its cellular receptors in CMEC and ARVM, and therefore alters paracrine signaling in the myocardium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of our study was to investigate the phenomenon of intussusceptive angiogenesis with a focus on its molecular regulation by vascular endothelial growth factor receptor (VEGFR)/platelet-derived growth factor receptor β (PDGFRβ) pathways and biological significance for glomerular recovery after acute injury. Glomerular healing by intussusception was examined in a particular setting of Thy1.1 nephritis, where the lysis of mesangial cells results in an initial collapse and successive rebuilding of glomerular capillary structure. Restoration of capillary structure after induction of Thy1.1 nephritis occurred by intussusceptive angiogenesis resulting in i) rapid expansion of the capillary plexus with reinstatement of the glomerular filtration surface and ii) restoration of the archetypical glomerular vascular pattern. Glomerular capillaries of nephritic rats after combined VEGFR2 and PDGFRβ inhibition by PTK787/ZK222584 (PTK/ZK) were tortuous and irregular. However, the onset of intussusceptive angiogenesis was influenced only after long-term PTK/ZK treatment, providing an important insight into differential molecular regulation between sprouting and intussusceptive angiogenesis. PTK/ZK treatment abolished α-smooth muscle actin and tensin expression by injured mesangial cells, impaired glomerular filtration of microspheres, and led to the reduction of glomerular volume and the presence of multiple hemorrhages detectable in the tubular system. Collectively, treatment of nephritic patients with PTK/ZK compound is not recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the effects of tyrosine-kinase inhibitors of vascular endothelial growth factor (VECF) and platelet-derived growth factor (PDCF)-receptors on non-malignant tissue and whether they depend upon the stage of vascular maturation. MATERIALS AND METHODS: PTK787/ZK222584 and CGP53716 (VEGF- and PDGF-receptor inhibitor respectively), both alone and combined, were applied on chicken chorioallantoic membrane (CAM). RESULTS: On embryonic day of CAM development (E)8, only immature microvessels, which lack coverage of pericytes, are present: whereas the microvessels on E12 have pericytic coverage. This development was reflected in the expression levels of pericytic markers (alpha-smooth muscle actin, PDGF-receptor beta and desmin), which were found by immunoblotting to progressively increase between E8 and E12. Monotherapy with 2 microg of PTK787/ZK222584 induced significant vasodegeneration on E8, but not on E12. Monotherapy with CGP53716 affected only pericytes. When CGP53716 was applied prior to treatment with 2 microg of PTK787/ZK222584, vasodegeneration occurred also on E12. The combined treatment increased the apoptotic rate. as evidenced by the cDNA levels of caspase-9 and the TUNEL-assay. CONCLUSION: Anti-angiogenic treatment strategies for non-neoplastic disorders should aim to interfere with the maturation stage of the target vessels: monotherapy with VEGF-receptor inhibitor for immature vessels, and combined anti-angiogenic treatment for well developed mature vasculature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibitors of angiogenesis and radiation induce compensatory changes in the tumor vasculature both during and after treatment cessation. To assess the responses to irradiation and vascular endothelial growth factor-receptor tyrosine kinase inhibition (by the vascular endothelial growth factor tyrosine kinase inhibitor PTK787/ZK222854), mammary carcinoma allografts were investigated by vascular casting; electron, light, and confocal microscopy; and immunoblotting. Irradiation and anti-angiogenic therapy had similar effects on the tumor vasculature. Both treatments reduced tumor vascularization, particularly in the tumor medulla. After cessation of therapy, the tumor vasculature expanded predominantly by intussusception with a plexus composed of enlarged sinusoidal-like vessels containing multiple transluminal tissue pillars. Tumor revascularization originated from preserved alpha-smooth muscle actin-positive vessels in the tumor cortex. Quantification revealed that recovery was characterized by an angiogenic switch from sprouting to intussusception. Up-regulated alpha-smooth muscle actin-expression during recovery reflected the recruitment of alpha-smooth muscle actin-positive cells for intussusception as part of the angio-adaptive mechanism. Tumor recovery was associated with a dramatic decrease (by 30% to 40%) in the intratumoral microvascular density, probably as a result of intussusceptive pruning and, surprisingly, with only a minimal reduction of the total microvascular (exchange) area. Therefore, the vascular supply to the tumor was not severely compromised, as demonstrated by hypoxia-inducible factor-1alpha expression. Both irradiation and anti-angiogenic therapy cause a switch from sprouting to intussusceptive angiogenesis, representing an escape mechanism and accounting for the development of resistance, as well as rapid recovery, after cessation of therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of glycan-binding inhibitory receptors, and among them, Siglec-8 is selectively expressed on human eosinophils, basophils, and mast cells. On eosinophils, Siglec-8 engagement induces apoptosis, but its function on mast cells is unknown. OBJECTIVE: We sought to study the effect of Siglec-8 engagement on human mast cell survival and mediator release responses. METHODS: Human mast cells were generated from CD34+ precursors. Apoptosis was studied by using flow cytometry. Mast cell mediator release or human lung airway smooth muscle contraction was initiated by FcepsilonRI cross-linking with or without preincubation with Siglec-8 or control antibodies, and release of mediators was analyzed along with Ca++ flux. RBL-2H3 cells transfected with normal and mutated forms of Siglec-8 were used to study how Siglec-8 engagement alters mediator release. RESULTS: Siglec-8 engagement failed to induce human mast cell apoptosis. However, preincubation with Siglec-8 mAbs significantly (P < .05) inhibited FcepsilonRI-dependent histamine and prostaglandin D(2) release, Ca++ flux, and anti-IgE-evoked contractions of human bronchial rings. In contrast, release of IL-8 was not inhibited. Siglec-8 ligation was also shown to inhibit beta-hexosaminidase release and Ca++ flux triggered through FcepsilonRI in RBL-2H3 cells transfected with full-length human Siglec-8 but not in cells transfected with Siglec-8 containing a tyrosine to phenylalanine point mutation in the membrane-proximal immunoreceptor tyrosine-based inhibitory motif domain. CONCLUSION: These data represent the first reported inhibitory effects of Siglec engagement on human mast cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large number of studies utilize animal models to investigate therapeutic angiogenesis. However, the lack of a standardized experimental model leaves the comparison of different studies problematic. To establish a reference model of prolonged moderate tissue ischemia, we created unilateral hind limb ischemia in athymic rnu-rats by surgical excision of the femoral vessels. Blood flow of the limb was monitored for 60 days by laser Doppler imaging. Following a short postoperative period of substantially depressed perfusion, the animals showed a status of moderate hind limb ischemia from day 14 onwards. Thereafter, the perfusion remained at a constant level (55.5% of normal value) until the end of the observation period. Histopathological assessment of the ischemic musculature on postoperative days 28 and 60 showed essentially no inflammatory cell infiltrate or fibrosis. However, the mitochondrial activity and capillary-to-fiber ratio of the muscular tissue was reduced to 52.7% of normal, presenting with a significant weakness of the ischemic limb evidenced by a progressive decline in performance. Intramuscular injection of culture-expanded human endothelial progenitor cells (EPC) resulted in a significant increase in blood flow (82.0+/-3.5% of normal), capillary density (1.60+/-0.08/muscle fiber) and smooth muscle covered arterioles (8.0+/-0.6/high power field) in the ischemic hind limb as compared to controls (55.0+/-3.1%; 0.99+/-0.03; 5.0+/-0.2). In conclusion, chronic, moderate hind limb ischemia with consistently reduced perfusion levels persisting over a prolonged period can be established reliably in rnu athymic nude rats and is responsive to pro-angiogenic treatments such as EPC transplantation. This study provides a detailed protocol of a highly reproducible reference model to test novel therapeutic options for limb ischemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A heterodimeric 760-kDa dermatan sulphate proteoglycan tentatively named PG-760 was characterized as a product of keratinocytes, endothelial cells, and fibroblasts. The two core proteins of 460 kDa and 300 kDa are linked by disulphide bridges, and both carry one or only very few dermatan sulphate chains. Different antisera against PG-760 were used in the present study to investigate the distribution in selected murine tissues by light and electron microscopy. PG-760 immunostaining was observed in cornea (epithelium including basement membrane, stroma, and Descemet's membrane), skin, mucosa of the small intestine, Engelbreth-Holm-Swarm (EHS)-tumour (matrix and cells), and the smooth muscle layers of uterus, small intestine, and blood vessels. No staining was observed in capillaries, striated muscles, and liver parenchyma including the central vein. The expression of PG-760 in EHS-tumour was also demonstrated after extraction with 4 M guanidine and partial purification by diethylaminoethyl (DEAE)-chromatography. We conclude that this novel proteoglycan exhibits a unique tissue distribution being a constituent of some but not all basement membranes, of some other extracellular matrices, and additionally, of all investigated smooth muscle layers.