62 resultados para Variance decomposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying and comparing different steady states is an important task for clinical decision making. Data from unequal sources, comprising diverse patient status information, have to be interpreted. In order to compare results an expressive representation is the key. In this contribution we suggest a criterion to calculate a context-sensitive value based on variance analysis and discuss its advantages and limitations referring to a clinical data example obtained during anesthesia. Different drug plasma target levels of the anesthetic propofol were preset to reach and maintain clinically desirable steady state conditions with target controlled infusion (TCI). At the same time systolic blood pressure was monitored, depth of anesthesia was recorded using the bispectral index (BIS) and propofol plasma concentrations were determined in venous blood samples. The presented analysis of variance (ANOVA) is used to quantify how accurately steady states can be monitored and compared using the three methods of measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localized Magnetic Resonance Spectroscopy (MRS) is in widespread use for clinical brain research. Standard acquisition sequences to obtain one-dimensional spectra suffer from substantial overlap of spectral contributions from many metabolites. Therefore, specially tuned editing sequences or two-dimensional acquisition schemes are applied to extend the information content. Tuning specific acquisition parameters allows to make the sequences more efficient or more specific for certain target metabolites. Cramér-Rao bounds have been used in other fields for optimization of experiments and are now shown to be very useful as design criteria for localized MRS sequence optimization. The principle is illustrated for one- and two-dimensional MRS, in particular the 2D separation experiment, where the usual restriction to equidistant echo time spacings and equal acquisition times per echo time can be abolished. Particular emphasis is placed on optimizing experiments for quantification of GABA and glutamate. The basic principles are verified by Monte Carlo simulations and in vivo for repeated acquisitions of generalized two-dimensional separation brain spectra obtained from healthy subjects and expanded by bootstrapping for better definition of the quantification uncertainties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research suggests that the personality of a relationship partner predicts not only the individual’s own satisfaction with the relationship but also the partner’s satisfaction. Based on the actor–partner interdependence model, the present research tested whether actor and partner effects of personality are biased when the same method (e.g., self-report) is used for the assessment of personality and relationship satisfaction and, consequently, shared method variance is not controlled for. Data came from 186 couples, of whom both partners provided self- and partner reports on the Big Five personality traits. Depending on the research design, actor effects were larger than partner effects (when using only self-reports), smaller than partner effects (when using only partner reports), or of about the same size as partner effects (when using self- and partner reports). The findings attest to the importance of controlling for shared method variance in dyadic data analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we are concerned about the short-term scheduling of industrial make-and-pack production processes. The planning problem consists in minimizing the production makespan while meeting given end-product demands. Sequence-dependent changeover times, multi-purpose storage units with finite capacities, quarantine times, batch splitting, partial equipment connectivity, material transfer times, and a large number of operations contribute to the complexity of the problem. Known MILP formulations cover all technological constraints of such production processes, but only small problem instances can be solved in reasonable CPU times. In this paper, we develop a heuristic in order to tackle large instances. Under this heuristic, groups of batches are scheduled iteratively using a novel MILP formulation; the assignment of the batches to the groups and the scheduling sequence of the groups are determined using a priority rule. We demonstrate the applicability by means of a real-world production process.