72 resultados para Uses of past


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inbreeding is common in plant populations and can affect plant fitness and resistance against herbivores. These effects are likely to depend on population history. In a greenhouse experiment with plants from 17 populations of Lychnis flos-cuculi, we studied the effects of experimental inbreeding on resistance and plant fitness. Depending on the levels of past herbivory and abiotic factors at the site of plant origin, we found either inbreeding or outbreeding depression in herbivore resistance. Furthermore, when not damaged experimentally by snail herbivores, plants from populations with higher heterozygosity suffered from inbreeding depression and those from populations with lower heterozygosity suffered from outbreeding depression. These effects of inbreeding and outbreeding were not apparent under experimental snail herbivory. We conclude that inbreeding effects on resistance and plant fitness depend on population history. Moreover, herbivory can mask inbreeding effects on plant fitness. Thus, understanding inbreeding effects on plant fitness requires studying multiple populations and considering population history and biotic interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review of late-Holocene palaeoclimatology represents the results from a PAGES/CLIVAR Intersection Panel meeting that took place in June 2006. The review is in three parts: the principal high-resolution proxy disciplines (trees, corals, ice cores and documentary evidence), emphasizing current issues in their use for climate reconstruction; the various approaches that have been adopted to combine multiple climate proxy records to provide estimates of past annual-to-decadal timescale Northern Hemisphere surface temperatures and other climate variables, such as large-scale circulation indices; and the forcing histories used in climate model simulations of the past millennium. We discuss the need to develop a framework through which current and new approaches to interpreting these proxy data may be rigorously assessed using pseudo-proxies derived from climate model runs, where the `answer' is known. The article concludes with a list of recommendations. First, more raw proxy data are required from the diverse disciplines and from more locations, as well as replication, for all proxy sources, of the basic raw measurements to improve absolute dating, and to better distinguish the proxy climate signal from noise. Second, more effort is required to improve the understanding of what individual proxies respond to, supported by more site measurements and process studies. These activities should also be mindful of the correlation structure of instrumental data, indicating which adjacent proxy records ought to be in agreement and which not. Third, large-scale climate reconstructions should be attempted using a wide variety of techniques, emphasizing those for which quantified errors can be estimated at specified timescales. Fourth, a greater use of climate model simulations is needed to guide the choice of reconstruction techniques (the pseudo-proxy concept) and possibly help determine where, given limited resources, future sampling should be concentrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reconstruction of past environmental and historical events is much needed in Amazonia, a region at the centre of heated debates about the extent of pre-Columbian human disturbance of the natural ecosystems. Important aspects of this debate are to establish to what extent the rise of social complexity was influenced by the local geo-ecology; and what productive strategies were adopted in order to sustain these societies. The Llanos de Moxos (LM), in the Bolivian Amazon, is a vast floodplain made up of a variety of geo-ecological sub regions that host many different types of pre-Columbian earthworks. Therefore, it offers an excellent opportunity to compare different kinds of archaeological landscapes and their relationship to different pre-Columbian cultures and environmental settings. This paper analyses the links between pre-Columbian earthworks and the local geo-ecology in two regions of the LM: 1) the platform field region (PFR) in the north of Santa Ana de Yacuma, where the highest concentration of raised fields has been documented, and 2) the monumental mounds region (MMR) south and east of Trinidad, where >100 pre-Columbian monumental mounds are found. The study draws from remote sensing and GIS analysis, field work in the Bolivian lowlands, and laboratory analysis. Differences in the way people transformed the landscape in the PFR and MMR seem to respond to differences in the local geo-ecology of the two sites. The results also suggest that environmental conditions exerted an important, though not exclusive, control over the levels of social complexity that were reached in different areas of the LM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High-resolution, well-calibrated records of lake sediments are critically important for quantitative climate reconstructions, but they remain a methodological and analytical challenge. While several comprehensive paleotemperature reconstructions have been developed across Europe, only a few quantitative high-resolution studies exist for precipitation. Here we present a calibration and verification study of lithoclastic sediment proxies from proglacial Lake Oeschinen (46°30′N, 7°44′E, 1,580 m a.s.l., north–west Swiss Alps) that are sensitive to rainfall for the period AD 1901–2008. We collected two sediment cores, one in 2007 and another in 2011. The sediments are characterized by two facies: (A) mm-laminated clastic varves and (B) turbidites. The annual character of the laminae couplets was confirmed by radiometric dating (210Pb, 137Cs) and independent flood-layer chronomarkers. Individual varves consist of a dark sand-size spring-summer layer enriched in siliciclastic minerals and a lighter clay-size calcite-rich winter layer. Three subtypes of varves are distinguished: Type I with a 1–1.5 mm fining upward sequence; Type II with a distinct fine-sand base up to 3 mm thick; and Type III containing multiple internal microlaminae caused by individual summer rainstorm deposits. Delta-fan surface samples and sediment trap data fingerprint different sediment source areas and transport processes from the watershed and confirm the instant response of sediment flux to rainfall and erosion. Based on a highly accurate, precise and reproducible chronology, we demonstrate that sediment accumulation (varve thickness) is a quantitative predictor for cumulative boreal alpine spring (May–June) and spring/summer (May–August) rainfall (rMJ = 0.71, rMJJA = 0.60, p < 0.01). Bootstrap-based verification of the calibration model reveals a root mean squared error of prediction (RMSEPMJ = 32.7 mm, RMSEPMJJA = 57.8 mm) which is on the order of 10–13 % of mean MJ and MJJA cumulative precipitation, respectively. These results highlight the potential of the Lake Oeschinen sediments for high-resolution reconstructions of past rainfall conditions in the northern Swiss Alps, central and eastern France and south-west Germany.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract concepts like numbers or time are thought to be represented in the more concrete domain of space and the sensorimotor system. For example, thinking of past or future events has a physical manifestation in backward or forward body sway, respectively. In the present study, we investigated the reverse effect: can passive whole-body motion influence the processing of temporal information? Participants were asked to categorize verbal stimuli to the concepts future or past while they were displaced forward and backward (Experiment 1), or upward and downward (Experiment 2). The results showed that future related verbal stimuli were categorized faster during forward as compared to backward motion. This finding supports the view that temporal events are represented along a mental time line and that the sensorimotor system is linked to that representation. We showed that body motion is not just an epiphenomenon of temporal thoughts. Passive whole-body motion can influence higher-order temporal cognition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND Currently only a few reports exist on how to prepare medical students for skills laboratory training. We investigated how students and tutors perceive a blended learning approach using virtual patients (VPs) as preparation for skills training. METHODS Fifth-year medical students (N=617) were invited to voluntarily participate in a paediatric skills laboratory with four specially designed VPs as preparation. The cases focused on procedures in the laboratory using interactive questions, static and interactive images, and video clips. All students were asked to assess the VP design. After participating in the skills laboratory 310 of the 617 students were additionally asked to assess the blended learning approach through established questionnaires. Tutors' perceptions (N=9) were assessed by semi-structured interviews. RESULTS From the 617 students 1,459 VP design questionnaires were returned (59.1%). Of the 310 students 213 chose to participate in the skills laboratory; 179 blended learning questionnaires were returned (84.0%). Students provided high overall acceptance ratings of the VP design and blended learning approach. By using VPs as preparation, skills laboratory time was felt to be used more effectively. Tutors perceived students as being well prepared for the skills laboratory with efficient uses of time. CONCLUSION The overall acceptance of the blended learning approach was high among students and tutors. VPs proved to be a convenient cognitive preparation tool for skills training.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Knowledge of past natural flood variability and controlling climate factors is of high value since it can be useful to refine projections of the future flood behavior under climate warming. In this context, we present a seasonally resolved 2000 year long flood frequency and intensity reconstruction from the southern Alpine slope (North Italy) using annually laminated (varved) lake sediments. Floods occurred predominantly during summer and autumn, whereas winter and spring events were rare. The all-season flood frequency and, particularly, the occurrence of summer events increased during solar minima, suggesting solar-induced circulation changes resembling negative conditions of the North Atlantic Oscillation as controlling atmospheric mechanism. Furthermore, the most extreme autumn events occurred during a period of warm Mediterranean sea surface temperature. Interpreting these results in regard to present climate change, our data set proposes for a warming scenario, a decrease in summer floods, but an increase in the intensity of autumn floods at the South-Alpine slope.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The importance of long-term historical information derived from paleoecological studies has long been recognized as a fundamental aspect of effective conservation. However, there remains some uncertainty regarding the extent to which paleoecology can inform on specific issues of high conservation priority, at the scale for which conservation policy decisions often take place. Here we review to what extent the past occurrence of three fundamental aspects of forest conservation can be assessed using paleoecological data, with a focus on northern Europe. These aspects are (1) tree species composition, (2) old/large trees and coarse woody debris, and (3) natural disturbances. We begin by evaluating the types of relevant historical information available from contemporary forests, then evaluate common paleoecological techniques, namely dendrochronology, pollen, macrofossil, charcoal, and fossil insect and wood analyses. We conclude that whereas contemporary forests can be used to estimate historical, natural occurrences of several of the aspects addressed here (e.g. old/large trees), paleoecological techniques are capable of providing much greater temporal depth, as well as robust quantitative data for tree species composition and fire disturbance, qualitative insights regarding old/large trees and woody debris, but limited indications of past windstorms and insect outbreaks. We also find that studies of fossil wood and paleoentomology are perhaps the most underutilized sources of information. Not only can paleoentomology provide species specific information, but it also enables the reconstruction of former environmental conditions otherwise unavailable. Despite the potential, the majority of conservation-relevant paleoecological studies primarily focus on describing historical forest conditions in broad terms and for large spatial scales, addressing former climate, land-use, and landscape developments, often in the absence of a specific conservation context. In contrast, relatively few studies address the most pressing conservation issues in northern Europe, often requiring data on the presence or quantities of dead wood, large trees or specific tree species, at the scale of the stand or reserve. Furthermore, even fewer examples exist of detailed paleoecological data being used for conservation planning, or the setting of operative restorative baseline conditions at local scales. If ecologist and conservation biologists are going to benefit to the full extent possible from the ever-advancing techniques developed by the paleoecological sciences, further integration of these disciplines is desirable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As Social Network Sites (SNS) permeate our daily routines, the question whether participation results in value for SNS users becomes particularly acute. This study adopts a 'participation-source-outcome' perspective to explore how distinct uses of SNS generate various types of social capital benefits. Building on existing research, extensive qualitative findings and an empirical study with 253 Facebook users, we uncover the process of social capital formation on SNS. We find that even though active communication is an important prerequisite, it is the diversified network structure and the increased social connectedness that are responsible for the attainment of the four benefits of social capital on SNS: emotional support, networking value, horizon broadening and offline participation. Moreover, we propose and validate scales to measure social capital benefits in the novel context of SNS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Greenland NEEM (North Greenland Eemian Ice Drilling) operation in 2010 provided the first opportunity to combine trace-gas measurements by laser spectroscopic instruments and continuous-flow analysis along a freshly drilled ice core in a field-based setting. We present the resulting atmospheric methane (CH4) record covering the time period from 107.7 to 9.5 ka b2k (thousand years before 2000 AD). Companion discrete CH4 measurements are required to transfer the laser spectroscopic data from a relative to an absolute scale. However, even on a relative scale, the high-resolution CH4 data set significantly improves our knowledge of past atmospheric methane concentration changes. New significant sub-millennial-scale features appear during interstadials and stadials, generally associated with similar changes in water isotopic ratios of the ice, a proxy for local temperature. In addition to the midpoint of Dansgaard–Oeschger (D/O) CH4 transitions usually used for cross-dating, sharp definition of the start and end of these events brings precise depth markers (with ±20 cm uncertainty) for further cross-dating with other palaeo- or ice core records, e.g. speleothems. The method also provides an estimate of CH4 rates of change. The onsets of D/O events in the methane signal show a more rapid rate of change than their endings. The rate of CH4 increase associated with the onsets of D/O events progressively declines from 1.7 to 0.6 ppbv yr−1 in the course of marine isotope stage 3. The largest observed rate of increase takes place at the onset of D/O event #21 and reaches 2.5 ppbv yr−1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123 ± 18 m3 s–1) using indirect methods, but one-dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127 ± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233 ± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35-year return period) equivalent to the 50-year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the last forty years, applying dendrogeomorphology to palaeoflood analysis has improved estimates of the frequency and magnitude of past floods worldwide. This paper reviews the main results obtained by applying dendrogeomorphology to flood research in several case studies in Central Spain. These dendrogeomorphological studies focused on the following topics: (1) anatomical analysis to understand the physiological response of trees to flood damage and improve sampling efficiency; (2) compiling robust flood chronologies in ungauged mountain streams, (3) determining flow depth and estimating flood discharge using two-dimensional hydraulic modelling, and comparing them with other palaeostage indicators; (4) calibrating hydraulic model parameters (i.e. Manning roughness); and (5) implementing stochastic-based, cost–benefit analysis to select optimal mitigation measures. The progress made in these areas is presented with suggestions for further research to improve the applicability of dendrogeochronology to palaeoflood studies. Further developments will include new methods for better identification of the causes of specific types of flood damage to trees (e.g. tilted trees) or stable isotope analysis of tree rings to identify the climatic conditions associated with periods of increasing flood magnitude or frequency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Matrix pore water in the connected inter- and intragranular pore space of low-permeable crystalline bedrock interacts with flowing fracture groundwater predominately by diffusion. Based on the slow exchange between the two water reservoirs, matrix pore water acts as an archive of past changes in fracture groundwater compositions and thus of the palaeohydrological history of a site. Matrix pore water of crystalline bedrock from the Olkiluoto investigation site (SW Finland) was characterised using the stable water isotopes (δ18O, δ2H), combined with the concentrations of dissolved chloride and bromide as natural tracers. The comparison of tracer concentrations in pore water and present-day fracture groundwater suggest for the pore water the presence of old, dilute meteoric water components that infiltrated into the fractures during various warm climate stages. These different meteoric components can be discerned based on the diffusion distance between the two reservoirs and be brought into context with the palaeohydrological evolution of the site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Earth’s climate system is driven by a complex interplay of internal chaotic dynamics and natural and anthropogenic external forcing. Recent instrumental data have shown a remarkable degree of asynchronicity between Northern Hemisphere and Southern Hemisphere temperature fluctuations, thereby questioning the relative importance of internal versus external drivers of past as well as future climate variability1, 2, 3. However, large-scale temperature reconstructions for the past millennium have focused on the Northern Hemisphere4, 5, limiting empirical assessments of inter-hemispheric variability on multi-decadal to centennial timescales. Here, we introduce a new millennial ensemble reconstruction of annually resolved temperature variations for the Southern Hemisphere based on an unprecedented network of terrestrial and oceanic palaeoclimate proxy records. In conjunction with an independent Northern Hemisphere temperature reconstruction ensemble5, this record reveals an extended cold period (1594–1677) in both hemispheres but no globally coherent warm phase during the pre-industrial (1000–1850) era. The current (post-1974) warm phase is the only period of the past millennium where both hemispheres are likely to have experienced contemporaneous warm extremes. Our analysis of inter-hemispheric temperature variability in an ensemble of climate model simulations for the past millennium suggests that models tend to overemphasize Northern Hemisphere–Southern Hemisphere synchronicity by underestimating the role of internal ocean–atmosphere dynamics, particularly in the ocean-dominated Southern Hemisphere. Our results imply that climate system predictability on decadal to century timescales may be lower than expected based on assessments of external climate forcing and Northern Hemisphere temperature variations5, 6 alone.