42 resultados para Two-dimensional gel
Resumo:
Purpose: Traditionally, the proximal isovelocity surface area (PISA) is based on the assumption of a single hemisphere (hemispheric PISA), but this technique has not been validated for the quantification of mitral regurgitation (MR) with multiple jets. Methods: The left heart simulator was actuated by a pulsatile pump at various stroke amplitudes. The regurgitant volume (Rvol) passing through the mitral valve phantoms with single and double regurgitant orifices of varying size and interspace was quantified by a flowmeter as reference technique. Color Doppler 3-D full-volumes were obtained, and Rvol were derived from 2-D PISA surfaces on the basis of hemispheric and hemicylindric assumption with one base (partial hemicylindric PISA) or 2 bases (total hemicylindric PISA). Results: 72 regurgitant volumes (Rvol range: 8 to 76 ml/beat) were obtained. Hemispheric PISA Rvol correlated well with reference Rvol by one orifice (R²=0.97; bias -2.7±3.2ml), but less by ≥ one orifice (R²=0.89). When a fusion of two PISAs occured, addition of two hemispheric PISA overestimated Rvol (bias 9.1±12.2ml, fig.1), and single hemispheric PISA underestimated Rvol (bias -12.4±4.9ml). If an integrated approach was used (hemispheric in single orifice, total hemicylindric in two non-fused PISAs and partial hemicylindric in two fused PISAs), the correlation was R²=0.95, bias -1.6±5.6ml (fig.2). In the ROC analysis, the cutoff to detect ≥ moderate-to-severe Rvol (≥45ml) was 42ml (AUC 0.99, sens. 100%, spec. 93%). Conclusions: In MR with two regurgitant jets, the 2-D hemicylindric assumption of the PISA offers a better quantification of Rvol than the hemispheric assumption. Quantification of MR using 2-D PISA requires an integrated approach that considers number of regurgitant orifices and fusion of the PISAs.
Resumo:
Heating of a pink two-dimensional Co(II) coordination network {[Co2(μ2-OH2)(bdc)2(S-nia)2(H2O)(dmf)]·2(dmf)·(H2O)}n (1) built from 1,4-benzenedicarboxylic acid (H2bdc) residues and thionicotinamide (S-nia) ligands initiates a single-crystal-to-single-crystal transition accompanied by removal of both coordinated and co-crystallized solvents. In the dry blue form, [Co(bdc)(S-nia)]n (dry_1), the Co(II) centers changed from an octahedral to a square pyramidal configuration.
Resumo:
We introduce a new fiber-optical approach for reflection based refractive index mapping. Our approach leads to improved stability and reliability over existing free-space confocal instruments and significantly cuts alignment efforts and reduces the number of components needed. Other than properly cleaved fiber end-faces, this setup requires no additional sample preparation. The instrument is calibrated by means of a set of samples with known refractive indices. The index steps of commercially available fibers are measured accurately down to < 10⁻³. The precision limit of the instrument is currently of the order of 10⁻⁴.
Resumo:
Two-dimensional (2D) crystallisation of Membrane proteins reconstitutes them into their native environment, the lipid bilayer. Electron crystallography allows the structural analysis of these regular protein–lipid arrays up to atomic resolution. The crystal quality depends on the protein purity, ist stability and on the crystallisation conditions. The basics of 2D crystallisation and different recent advances are reviewed and electron crystallography approaches summarised. Progress in 2D crystallisation, sample preparation, image detectors and automation of the data acquisition and processing pipeline makes 2D electron crystallography particularly attractive for the structural analysis of membrane proteins that are too small for single-particle analyses and too unstable to form three-dimensional (3D) crystals.
Resumo:
Bimetallic, oxalate-bridged compounds with bi- and trivalent transition metals comprise a class of layered materials which express a large variety in their molecular-based magnetic behavior. Because of this, the availability of the corresponding single-crystal structural data is essential to the successful interpretation of the experimental magnetic results. We report in this paper the crystal structure and magnetic properties of the ferromagnetic compound {[N(n-C3H7)4][MnIICrIII(C2O4)3]}n (1), the crystal structure of the antiferromagnetic compound {[N(n-C4H9)4][MnIIFeIII(C2O4)3]}n (2), and the results of a neutron diffraction study of a polycrystalline sample of the ferromagnetic compound {[P(C6D5)4][MnIICrIII(C2O4)3]}n (3). Crystal data: 1, rhombohedral, R3c, a = 9.363(3) Å, c = 49.207(27) Å, Z = 6; 2, hexagonal, P63, a = 9.482(2) Å, c = 17.827(8) Å, Z = 2. The structures consist of anionic, two-dimensional, honeycomb networks formed by the oxalate-bridged metal ions, interleaved by the templating cations. Single-crystal field dependent magnetization measurements as well as elastic neutron scattering experiments on the manganese(II)−chromium(III) samples show the existence of long-range ferromagnetic ordering behavior below Tc = 6 K. The magnetic structure corresponds to an alignment of the spins perpendicular to the network layers. In contrast, the manganese(II)−iron(III) compound expresses a two-dimensional antiferromagnetic ordering.
Resumo:
Seeking biomarkers reflecting disease development in cystic echinococcosis (CE), we used a proteomic approach linked to immunological characterisation for the identification of respective antigens. Two-dimensional gel electrophoresis (2-DE) of sheep hydatid fluid, followed by immunoblot analysis (IB) with sera from patients with distinct phases of disease, enabled us to identify by mass spectrometry heat shock protein 20 (HSP20) as a potential marker of active CE. Using IB, antibodies specific to the 34 kDa band of HSP20 were detected in sera from 61/95 (64%) patients with CE, but not in sera from healthy subjects. IB revealed anti-HSP20 antibodies in a higher percentage of sera from patients with active disease than in sera from patients with inactive disease (81 vs. 24%; P = 10(-4)). These primary results were confirmed in a long-term follow-up study after pharmacological and surgical treatment. Herewith anti-HSP20 antibody levels significantly decreased over the course of treatment in sera from patients with cured disease, relative to sera from patients with progressive disease (P = 0.017). Thus, during CE, a comprehensive strategy of proteomic identification combined with immunological validation represents a promising approach for the identification of biomarkers useful for the prognostic assessment of treatment of CE patients.
Resumo:
Mastitic milk is associated with increased bovine protease activity, such as that from plasmin and somatic cell enzymes, which cause proteolysis of the caseins and may reduce cheese yield and quality. The aim of this work was to characterize the peptide profile resulting from proteolysis in a model mastitis system and to identify the proteases responsible. One quarter of each of 2 cows (A and B) was infused with lipoteichoic acid from Staphylococcus aureus. The somatic cell counts of the infused quarters reached a peak 6h after infusion, whereas plasmin activity of those quarters also increased, reaching a peak after 48 and 12h for cow A and B, respectively. Urea-polyacrylamide gel electrophoretograms of milk samples of cow A and B obtained at different time points after infusion and incubated for up to 7 d showed almost full hydrolysis of beta- and alpha(S1)-casein during incubation of milk samples at peak somatic cell counts, with that of beta-casein being faster than that of alpha(S1)-casein. Two-dimensional gel electrophoretograms of milk 6h after infusion with the toxin confirmed hydrolysis of beta- and alpha(S1)-casein and the appearance of lower-molecular-weight products. Peptides were subsequently separated by reversed-phase HPLC and handmade nanoscale C(18) columns, and identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. Twenty different peptides were identified and shown to originate from alpha(s1)- and beta-casein. Plasmin, cathepsin B and D, elastase, and amino- and carboxypeptidases were suggested as possible responsible proteases based on the peptide cleavage sites. The presumptive activity of amino- and carboxypeptidases is surprising and may indicate the activity of cathepsin H, which has not been reported in milk previously.
Resumo:
Lactococcus lactis IL1403, a lactic acid bacterium widely used for food fermentation, is often exposed to stress conditions. One such condition is exposure to copper, such as in cheese making in copper vats. Copper is an essential micronutrient in prokaryotes and eukaryotes but can be toxic if in excess. Thus, copper homeostatic mechanisms, consisting chiefly of copper transporters and their regulators, have evolved in all organisms to control cytoplasmic copper levels. Using proteomics to identify novel proteins involved in the response of L. lactis IL1403 to copper, cells were exposed to 200 muM copper sulfate for 45 min, followed by resolution of the cytoplasmic fraction by two-dimensional gel electrophoresis. One protein strongly induced by copper was LctO, which was shown to be a NAD-independent lactate oxidase. It catalyzed the conversion of lactate to pyruvate in vivo and in vitro. Copper, cadmium, and silver induced LctO, as shown by real-time quantitative PCR. A copper-regulatory element was identified in the 5' region of the lctO gene and shown to interact with the CopR regulator, encoded by the unlinked copRZA operon. Induction of LctO by copper represents a novel copper stress response, and we suggest that it serves in the scavenging of molecular oxygen.
Resumo:
A reproducible, standardized and simple sample preparation methodology is the key to successful two-dimensional gel electrophoresis (2-DE). This chapter describes step-by-step the sample preparation of culture medium from Madin-Darby canine kidney (MDCK) cells. Tips and tricks are given to circumvent possible pitfalls.
Resumo:
To identify components of the copper homeostatic mechanism of Lactococcus lactis, we employed two-dimensional gel electrophoresis to detect changes in the proteome in response to copper. Three proteins upregulated by copper were identified: glyoxylase I (YaiA), a nitroreductase (YtjD), and lactate oxidase (LctO). The promoter regions of these genes feature cop boxes of consensus TACAnnTGTA, which are the binding site of CopY-type copper-responsive repressors. A genome-wide search for cop boxes revealed 28 such sequence motifs. They were tested by electrophoretic mobility shift assays for the interaction with purified CopR, the CopY-type repressor of L. lactis. Seven of the cop boxes interacted with CopR in a copper-sensitive manner. They were present in the promoter region of five genes, lctO, ytjD, copB, ydiD, and yahC; and two polycistronic operons, yahCD-yaiAB and copRZA. Induction of these genes by copper was confirmed by real-time quantitative PCR. The copRZA operon encodes the CopR repressor of the regulon; a copper chaperone, CopZ; and a putative copper ATPase, CopA. When expressed in Escherichia coli, the copRZA operon conferred copper resistance, suggesting that it functions in copper export from the cytoplasm. Other member genes of the CopR regulon may similarly be involved in copper metabolism.
Resumo:
Plasma microparticles (MPs, <1.5 mum) originate from platelet and cell membrane lipid rafts and possibly regulate inflammatory responses and thrombogenesis. These actions are mediated through their phospholipid-rich surfaces and associated cell-derived surface molecules. The ectonucleotidase CD39/ecto-nucleoside triphosphate diphosphohydrolase1 (E-NTPDase1) modulates purinergic signalling through pericellular ATP and ADP phosphohydrolysis and is localized within lipid rafts in the membranes of endothelial- and immune cells. This study aimed to determine whether CD39 associates with circulating MPs and might further impact phenotype and function. Plasma MPs were found to express CD39 and exhibited classic E-NTPDase ecto-enzymatic activity. Entpd1 (Cd39) deletion in mice produced a pro-inflammatory phenotype associated with quantitative and qualitative differences in the MP populations, as determined by two dimensional-gel electrophoresis, western blot and flow cytometry. Entpd1-null MPs were also more abundant, had significantly higher proportions of platelet- and endothelial-derived elements and decreased levels of interleukin-10, tumour necrosis factor receptor 1 and matrix metalloproteinase 2. Consequently, Cd39-null MP augment endothelial activation, as determined by inflammatory cytokine release and upregulation of adhesion molecules in vitro. In conclusion, CD39 associates with circulating MP and may directly or indirectly confer functional properties. Our data also suggest a modulatory role for CD39 within MP in the exchange of regulatory signals between leucocytes and vascular cells.
Resumo:
The prognosis of pancreatic neuroendocrine tumors is related to size, histology and proliferation rate. However, this stratification needs to be refined further. We conducted a proteome study on insulinomas, a well-defined pancreatic neuroendocrine tumor entity, in order to identify proteins that can be used as biomarkers for malignancy. Based on a long follow-up, insulinomas were divided into those with metastases (malignant) and those without (benign). Microdissected cells from six benign and six malignant insulinomas were subjected to a procedure combining fluorescence dye saturation labeling with high-resolution two-dimensional gel electrophoresis. Differentially expressed proteins were identified using nano liquid chromatography-electrospray ionization/multi-stage mass spectrometry and validated by immunohistochemistry on tissue microarrays containing 62 insulinomas. Sixteen differentially regulated proteins were identified among 3000 protein spots. Immunohistochemical validation revealed that aldehyde dehydrogenase 1A1 and voltage-dependent anion-selective channel protein 1 showed significantly stronger expression in malignant insulinomas than in benign insulinomas, whereas tumor protein D52 (TPD52) binding protein was expressed less strongly in malignant insulinomas than in benign insulinomas. Using multivariate analysis, low TPD52 expression was identified as a strong independent prognostic factor for both recurrence-free and overall disease-related survival.