62 resultados para Trans-1,2-dibromo-2-styrylpyridine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bistriazoles, 1,3-bis(1,2,4-triazol-4-yl)propane (tr2pr) and 1,3-bis(1,2,4-triazol-4-yl)adamantane (tr2ad), were examined in combination with the rigid tetratopic 1,3,5,7-adamantanetetracarboxylic acid (H4-adtc) platform for the construction of neutral heteroleptic copper(II) metal−organic frameworks. Two coordination polymers, [{Cu4(OH)2(H2O)2}{Cu4(OH)2}(tr2pr)2(H-adtc)4]·2H2O (1) and [Cu4(OH)2(tr2ad)2(H-adtc)2(H2O)2]·3H2O (2), were synthesized and structurally characterized. In complexes 1 and 2, the N1,N2-1,2,4-triazolyl (tr) and μ3-OH− groups serve as complementary bridges between adjacent metal centers supporting the tetranuclear dihydroxo clusters. The structure of 1 represents a unique association of two different kinds of centrosymmetrical {Cu4(OH)2} units in a tight 3D framework, while in compound 2, another configuration type of acentric tetranuclear metal clusters is organized in a layered 3,6-hexagonal motif. In both cases, the {Cu4(OH)2} secondary building block and trideprotonated carboxylate H-adtc3− can be viewed as covalently bound six- and three-connected nodes that define the net topology. The tr ligands, showing μ3- or μ4-binding patterns, introduce additional integrating links between the neighboring {Cu4(OH)2} fragments. A variable-temperature magnetic susceptibility study of 2 demonstrates strong antiferromagnetic intracluster coupling (J1 = −109 cm−1 and J2 = −21 cm−1), which combines for the bulk phase with a weak antiferromagnetic intercluster interaction (zj = −2.5 cm−1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, the contributions of Starlette, Stella, and AJISAI are not taken into account when defining the International Terrestrial Reference Frame (ITRF), despite the large amount of data collected in a long time-span. Consequently, the SLR-derived parameters and the SLR part of the ITRF are almost exclusively defined by LAGEOS-1 and LAGEOS-2. We investigate the potential of combining the observations to several SLR satellites with different orbital characteristics. Ten years of SLR data are homogeneously processed using the development version 5.3 of the Bernese GNSS Software. Special emphasis is put on orbit parameterization and the impact of LEO data on the estimation of the geocenter coordinates, Earth rotation parameters, Earth gravity field coefficients, and the station coordinates in one common adjustment procedure. We find that the parameters derived from the multi-satellite solutions are of better quality than those obtained in single satellite solutions or solutions based on the two LAGEOS satellites. A spectral analysis of the SLR network scale w.r.t. SLRF2008 shows that artifacts related to orbit perturbations in the LAGEOS-1/2 solutions, i.e., periods related to the draconitic years of the LAGEOS satellites, are greatly reduced in the combined solutions.