35 resultados para Time-varying
Resumo:
The objective of this study is to determine the impact of expectation associated with placebo and caffeine ingestion. We used a three-armed, randomized, double-blind design. Two three-armed experiments varying instruction (true, false, control) investigated the role of expectations of changes in arousal (blood pressure, heart rate), subjective well-being, and reaction time (RT). In Experiment 1 (N = 45), decaffeinated coffee was administered, and expectations were produced in one group by making them believe they had ingested caffeinated coffee. In Experiment 2 (N = 45), caffeinated orange juice was given in both experimental groups, but only one was informed about the true content. In Experiment 1, a significant effect for subjective alertness was found in the placebo treatment compared to the control group. However, for RT and well-being no significant effects were found. In Experiment 2, no significant expectancy effects were found. Caffeine produced large effects for blood pressure in both treatments compared to the control group, but the effects were larger for the false information group. For subjective well-being (alertness, calmness), considerable but nonsignificant changes were found for correctly informed participants, indicating possible additivity of pharmacologic effect and expectations. The results tentatively indicate that placebo and expectancy effects primarily show through introspection.
Resumo:
Quantitative reverse transcriptase real-time PCR (QRT-PCR) is a robust method to quantitate RNA abundance. The procedure is highly sensitive and reproducible as long as the initial RNA is intact. However, breaks in the RNA due to chemical or enzymatic cleavage may reduce the number of RNA molecules that contain intact amplicons. As a consequence, the number of molecules available for amplification decreases. We determined the relation between RNA fragmentation and threshold values (Ct values) in subsequent QRT-PCR for four genes in an experimental model of intact and partially hydrolyzed RNA derived from a cell line and we describe the relation between RNA integrity, amplicon size and Ct values in this biologically homogenous system. We demonstrate that degradation-related shifts of Ct values can be compensated by calculating delta Ct values between test genes and the mean values of several control genes. These delta Ct values are less sensitive to fragmentation of the RNA and are unaffected by varying amounts of input RNA. The feasibility of the procedure was demonstrated by comparing Ct values from a larger panel of genes in intact and in partially degraded RNA. We compared Ct values from intact RNA derived from well-preserved tumor material and from fragmented RNA derived from formalin-fixed, paraffin-embedded (FFPE) samples of the same tumors. We demonstrate that the relative abundance of gene expression can be based on FFPE material even when the amount of RNA in the sample and the extent of fragmentation are not known.
Resumo:
Rationale: Focal onset epileptic seizures are due to abnormal interactions between distributed brain areas. By estimating the cross-correlation matrix of multi-site intra-cerebral EEG recordings (iEEG), one can quantify these interactions. To assess the topology of the underlying functional network, the binary connectivity matrix has to be derived from the cross-correlation matrix by use of a threshold. Classically, a unique threshold is used that constrains the topology [1]. Our method aims to set the threshold in a data-driven way by separating genuine from random cross-correlation. We compare our approach to the fixed threshold method and study the dynamics of the functional topology. Methods: We investigate the iEEG of patients suffering from focal onset seizures who underwent evaluation for the possibility of surgery. The equal-time cross-correlation matrices are evaluated using a sliding time window. We then compare 3 approaches assessing the corresponding binary networks. For each time window: * Our parameter-free method derives from the cross-correlation strength matrix (CCS)[2]. It aims at disentangling genuine from random correlations (due to finite length and varying frequency content of the signals). In practice, a threshold is evaluated for each pair of channels independently, in a data-driven way. * The fixed mean degree (FMD) uses a unique threshold on the whole connectivity matrix so as to ensure a user defined mean degree. * The varying mean degree (VMD) uses the mean degree of the CCS network to set a unique threshold for the entire connectivity matrix. * Finally, the connectivity (c), connectedness (given by k, the number of disconnected sub-networks), mean global and local efficiencies (Eg, El, resp.) are computed from FMD, CCS, VMD, and their corresponding random and lattice networks. Results: Compared to FMD and VMD, CCS networks present: *topologies that are different in terms of c, k, Eg and El. *from the pre-ictal to the ictal and then post-ictal period, topological features time courses that are more stable within a period, and more contrasted from one period to the next. For CCS, pre-ictal connectivity is low, increases to a high level during the seizure, then decreases at offset. k shows a ‘‘U-curve’’ underlining the synchronization of all electrodes during the seizure. Eg and El time courses fluctuate between the corresponding random and lattice networks values in a reproducible manner. Conclusions: The definition of a data-driven threshold provides new insights into the topology of the epileptic functional networks.
Resumo:
By means of fixed-links modeling, the present study identified different processes of visual short-term memory (VSTM) functioning and investigated how these processes are related to intelligence. We conducted an experiment where the participants were presented with a color change detection task. Task complexity was manipulated through varying the number of presented stimuli (set size). We collected hit rate and reaction time (RT) as indicators for the amount of information retained in VSTM and speed of VSTM scanning, respectively. Due to the impurity of these measures, however, the variability in hit rate and RT was assumed to consist not only of genuine variance due to individual differences in VSTM retention and VSTM scanning but also of other, non-experimental portions of variance. Therefore, we identified two qualitatively different types of components for both hit rate and RT: (1) non-experimental components representing processes that remained constant irrespective of set size and (2) experimental components reflecting processes that increased as a function of set size. For RT, intelligence was negatively associated with the non-experimental components, but was unrelated to the experimental components assumed to represent variability in VSTM scanning speed. This finding indicates that individual differences in basic processing speed, rather than in speed of VSTM scanning, differentiates between high- and low-intelligent individuals. For hit rate, the experimental component constituting individual differences in VSTM retention was positively related to intelligence. The non-experimental components of hit rate, representing variability in basal processes, however, were not associated with intelligence. By decomposing VSTM functioning into non-experimental and experimental components, significant associations with intelligence were revealed that otherwise might have been obscured.
Resumo:
Ecology and conservation require reliable data on the occurrence of animals and plants. A major source of bias is imperfect detection, which, however, can be corrected for by estimation of detectability. In traditional occupancy models, this requires repeat or multi-observer surveys. Recently, time-to-detection models have been developed as a cost-effective alternative, which requires no repeat surveys and hence costs could be halved. We compared the efficiency and reliability of time-to-detection and traditional occupancy models under varying survey effort. Two observers independently searched for 17 plant species in 44100m(2) Swiss grassland quadrats and recorded the time-to-detection for each species, enabling detectability to be estimated with both time-to-detection and traditional occupancy models. In addition, we gauged the relative influence on detectability of species, observer, plant height and two measures of abundance (cover and frequency). Estimates of detectability and occupancy under both models were very similar. Rare species were more likely to be overlooked; detectability was strongly affected by abundance. As a measure of abundance, frequency outperformed cover in its predictive power. The two observers differed significantly in their detection ability. Time-to-detection models were as accurate as traditional occupancy models, but their data easier to obtain; thus they provide a cost-effective alternative to traditional occupancy models for detection-corrected estimation of occurrence.