109 resultados para Th pathways


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Understanding the help-seeking pathways of patients with a putative risk of developing psychosis helps improving development of specialised care services. This study aimed at obtaining information about: type of health professionals contacted by patients at putative risk for psychosis on their help-seeking pathways; number of contacts; type of symptoms leading to contacts with health professionals; interval between initial contact and referral to a specialised outpatient service. METHOD: The help-seeking pathways were assessed as part of a prospective study in 104 patients with suspected at-risk states for psychosis. RESULTS: The mean number of contacts prior to referral was 2.38. Patients with psychotic symptoms more often contacted mental health professionals, whereas patients with insidious and more unspecific features more frequently contacted general practitioners (GPs). CONCLUSIONS: GPs have been found to under-identify the insidious features of emerging psychosis (Simon et al. (2005) Br J Psychiatry 187:274-281). The fact that they were most often contacted by patients with exactly these features calls for focussed and specialised help for primary care physicians. Thus, delays along the help-seeking pathways may be shortened. This may be of particular relevance for patients with the deficit syndrome of schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Cardiac myopathies are the second leading cause of death in patients with Duchenne and Becker muscular dystrophy, the two most common and severe forms of a disabling striated muscle disease. Although the genetic defect has been identified as mutations of the dystrophin gene, very little is known about the molecular and cellular events leading to progressive cardiac muscle damage. Dystrophin is a protein linking the cytoskeleton to a complex of transmembrane proteins that interact with the extracellular matrix. The fragility of the cell membrane resulting from the lack of dystrophin is thought to cause an excessive susceptibility to mechanical stress. Here, we examined cellular mechanisms linking the initial membrane damage to the dysfunction of dystrophic heart. METHODS AND RESULTS: Cardiac ventricular myocytes were enzymatically isolated from 5- to 9-month-old dystrophic mdx and wild-type (WT) mice. Cells were exposed to mechanical stress, applied as osmotic shock. Stress-induced cytosolic and mitochondrial Ca(2+) signals, production of reactive oxygen species (ROS), and mitochondrial membrane potential were monitored with confocal microscopy and fluorescent indicators. Pharmacological tools were used to scavenge ROS and to identify their possible sources. Osmotic shock triggered excessive cytosolic Ca(2+) signals, often lasting for several minutes, in 82% of mdx cells. In contrast, only 47% of the WT cardiomyocytes responded with transient and moderate intracellular Ca(2+) signals. On average, the reaction was 6-fold larger in mdx cells. Removal of extracellular Ca(2+) abolished these responses, implicating Ca(2+) influx as a trigger for abnormal Ca(2+) signalling. Our further experiments revealed that osmotic stress in mdx cells produced an increase in ROS production and mitochondrial Ca(2+) overload. The latter was followed by collapse of the mitochondrial membrane potential, an early sign of cell death. CONCLUSION: Overall, our findings reveal that excessive intracellular Ca(2+) signals and ROS generation link the initial sarcolemmal injury to mitochondrial dysfunctions. The latter possibly contribute to the loss of functional cardiac myocytes and heart failure in dystrophy. Understanding the sequence of events of dystrophic cell damage and the deleterious amplification systems involved, including several positive feed-back loops, may allow for a rational development of novel therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: We investigated the molecular response of a non-ischemic hypoxic stress in the liver, in particular, to distinguish its hepatoprotective potential. METHODS: The livers of mice were subjected to non-ischemic hypoxia by clamping the hepatic-artery (HA) for 2h while maintaining portal circulation. Hypoxia was defined by a decrease in oxygen saturation, the activation of hypoxia-inducible factor (HIF)-1 and the mRNA up-regulation of responsive genes. To demonstrate that the molecular response to hypoxia may in part be hepatoprotective, pre-conditioned animals were injected with an antibody against Fas (Jo2) to induce acute liver failure. Hepatocyte apoptosis was monitored by caspase-3 activity, cleavage of lamin A and animal survival. RESULTS: Clamping the HA induced a hypoxic stress in the liver in the absence of severe metabolic distress or tissue damage. The hypoxic stimulus was sufficient to activate the HIF-1 signalling pathway and up-regulate hepatoprotective genes. Pre-conditioning the liver with hypoxia was able to delay the onset of Fas-mediated apoptosis and prolong animal survival. CONCLUSIONS: Our data reveal that hepatic cells can sense and respond to a decrease in tissue oxygenation, and furthermore, that activation of hypoxia-inducible signalling pathways function in part to promote liver cell survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate whether autistic subjects show a different pattern of neural activity than healthy individuals during processing of faces and complex patterns. METHODS: Blood oxygen level-dependent (BOLD) signal changes accompanying visual processing of faces and complex patterns were analyzed in an autistic group (n = 7; 25.3 [6.9] years) and a control group (n = 7; 27.7 [7.8] years). RESULTS: Compared with unaffected subjects, autistic subjects demonstrated lower BOLD signals in the fusiform gyrus, most prominently during face processing, and higher signals in the more object-related medial occipital gyrus. Further signal increases in autistic subjects vs controls were found in regions highly important for visual search: the superior parietal lobule and the medial frontal gyrus, where the frontal eye fields are located. CONCLUSIONS: The cortical activation pattern during face processing indicates deficits in the face-specific regions, with higher activations in regions involved in visual search. These findings reflect different strategies for visual processing, supporting models that propose a predisposition to local rather than global modes of information processing in autism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the role of brain antioxidant capacity in the pathogenesis of neonatal hypoxic-ischemic brain injury, we measured the activity of glutathione peroxidase (GPX) in both human-superoxide dismutase-1 (hSOD1) and human-GPX1 overexpressing transgenic (Tg) mice after neonatal hypoxia-ischemia (HI). We have previously shown that mice that overexpress the hSOD1 gene are more injured than their wild-type (WT) littermates after HI, and that H(2)O(2) accumulates in HI hSOD1-Tg hippocampus. We hypothesized that lower GPX activity is responsible for the accumulation of H(2)O(2). Therefore, increasing the activity of this enzyme through gene manipulation should be protective. We show that brains of hGPX1-Tg mice, in contrast to those of hSOD-Tg, have less injury after HI than WT littermates: hGPX1-Tg, median injury score = 8 (range, 0-24) versus WT, median injury score = 17 (range, 2-24), p < 0.01. GPX activity in hSOD1-Tg mice, 2 h and 24 h after HI, showed a delayed and bilateral decline in the cortex 24 h after HI (36.0 +/- 1.2 U/mg in naive hSOD1-Tg versus 29.1 +/- 1.7 U/mg in HI cortex and 29.2 +/- 2.0 for hypoxic cortex, p < 0.006). On the other hand, GPX activity in hGPX1-Tg after HI showed a significant increase by 24 h in the cortex ipsilateral to the injury (48.5 +/- 5.2 U/mg, compared with 37.2 +/- 1.5 U/mg in naive hGPX1-Tg cortex, p < 0.008). These findings support the hypothesis that the immature brain has limited GPX activity and is more susceptible to oxidative damage and may explain the paradoxical effect seen in ischemic neonatal brain when SOD1 is overexpressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of NO/cGMP pathways can induce pro-apoptotic pathways in cardiomyocytes although only a small number of cardiomyocytes fulfill the criteria of apoptosis. The same pathways reduce the contractile performance of cardiomyocytes. In the present study, we tested the hypothesis that exposure of cells to NO/cGMP for 24 h decrease their contractile performance due to an activation of pro-apoptotic pathways. Experiments were performed on freshly isolated and cultured adult ventricular rat cardiomyocytes. Cells were incubated with 8-bromo-cyclo-GMP (100 nmol/L-1 micromol/L), the NO donor SNAP (1 nmol/L-100 micromol/L), or the guanylyl cyclase activator YC-1 (3 micromol/L). Cell shortening, contraction and relaxation velocities, and diastolic cell lengths were determined at beating frequencies of 0.5, 1, and 2 Hz 24 h later. The activation of pro-apoptotic pathways was determined by staining of cardiomyocytes with an antibody directed against active caspase-3 and quantification of the number of apoptotic cells (annexin staining). Caspase-3 activation and an increase in the number of apoptotic cells was observed, but only at the highest concentrations tested (8-bromo-cyclo-GMP: 1-10 mmol/L; SNAP: 1-100 micromol/L). At these concentrations, none of the drugs decreased the mean cell shortening of cardiomyocytes. However, at concentrations lower than those required for induction of apoptotic cell death, the diastolic cell lengths and sarcomere lengths increased but cell shortening decreased. In conclusion, low concentrations of either NO or cGMP cause a desensitization of myofibrils, as indicated by elongated cell shapes, increased sarcomere lengths and reduced load-free cell shortening. High concentrations of NO/cGMP induce caspase-3 activation and increase the number of cells fulfilling the criteria of apoptotic cell death but did not impair cell function. Therefore, induction of apoptotic cell death per se seems not to contribute to the loss of contractile efficiency on the cellular level.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the immature brain hydrogen peroxide accumulates after excitotoxic hypoxia-ischemia and is neurotoxic. Immature hippocampal neurons were exposed to N-methyl-D-aspartate (NMDA), a glutamate agonist, and hydrogen peroxide (H(2)O(2)) and the effects of free radical scavenging and transition metal chelation on neurotoxicity were studied. alpha-Phenyl-N-tert.-butylnitrone (PBN), a known superoxide scavenger, attenuated both H(2)O(2) and NMDA mediated toxicity. Treatment with desferrioxamine (DFX), an iron chelator, at the time of exposure to H(2)O(2) was ineffective, but pretreatment was protective. DFX also protected against NMDA toxicity. TPEN, a metal chelator with higher affinities for a broad spectrum of transition metal ions, also protected against H(2)O(2) toxicity but was ineffective against NMDA induced toxicity. These data suggest that during exposure to free radical and glutamate agonists, the presence of iron and other free metal ions contribute to neuronal cell death. In the immature nervous system this neuronal injury can be attenuated by free radical scavengers and metal chelators.