37 resultados para Technological research institute
Resumo:
The main aim of the methodology presented in this paper is to provide a framework for a participatory process for the appraisal and selection of options to mitigate desertification and land degradation. This methodology is being developed within the EU project DESIRE (www.desire-project.eu/) in collaboration with WOCAT (www.wocat.org). It is used to select promising conservation strategies for test-implementation in each of the 16 degradation and desertification hotspot sites in the Mediterranean and around the world. The methodology consists of three main parts: In a first step, prevention and mitigation strategies already applied at the respective DESIRE study site are identified and listed during a workshop with representatives of different stakeholders groups (land users, policy makers, researchers). The participatory and process-oriented approach initiates a mutual learning process among the different stakeholders by sharing knowledge and jointly reflecting on current problems and solutions related to land degradation and desertification. In the second step these identified, locally applied solutions (technologies and approaches) are assessed with the help of the WOCAT methodology. Comprehensive questionnaires and a database system have been developed to document and evaluate all relevant aspects of technical measures as well as implementation approaches by teams of researchers and specialists, together with land users. This research process ensures systematic assessing and piecing together of local information, together with specific details about the environmental and socio-economic setting. The third part consists of another stakeholder workshop where promising strategies for sustainable land management in the given context are selected, based on the best practices database of WOCAT, including the evaluated locally applied strategies at the DESIRE sites. These promising strategies will be assessed with the help of a selection and decision support tool and adapted for test-implementation at the study site.
Resumo:
Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA’s Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), led by the Astronomical Institute of the University of Bern (AIUB), addresses this problem. The goal of the project is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). The In-Orbit Tumbling Analysis tool (ιOTA) is a prototype software, currently in development by Hyperschall Technologie Göttingen GmbH (HTG) within the framework of the project. ιOTA will be a highly modular software tool to perform short-(days), medium-(months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour, magnetic torquer activity and thruster firing. The purpose of ιOTA is to provide high accuracy short-term simulations to support observers and potential ADR missions, as well as medium-and long-term simulations to study the significance of the particular internal and external influences on the attitude, especially damping factors and momentum transfer. The simulation will also enable the investigation of the altitude dependency of the particular external influences. ιOTA's post-processing modules will generate synthetic measurements for observers and for software validation. The validation of the software will be done by cross-calibration with observations and measurements acquired by the project partners.
Resumo:
Despite being one of the world’s wealthiest countries and most modern economies, in Switzerland gender equality remains an elusive challenge. Paid maternity leave, legal abortion and an increase in women’s educational attainment are some of the milestones achieved since 1995, when the country was one of 189 states to adopt the Beijing Declaration and Platform for Action at the Fourth World Conference on Women. But while legal gender equality may be nearly achieved, much remains to be done to achieve gender equality in practice. Rigid gender stereotypes, wage discrimination, women’s heavy care burden, segregation in the workplace, violence against women, under-representation of women in political and economic decision making, and structural obstacles to reconciling family duties with employment still stand in the way of gender equality. In order to realize gender equality, government, employers, politicians and civil society all need to take concrete and coordinated actions. These range from changes in the educational sector, in the labour market and in the social security system to an active foreign policy that promotes women’s human rights.