36 resultados para TOLSTOY, LEON
Resumo:
OBJECTIVES The aim of the current Valve Academic Research Consortium (VARC)-2 initiative was to revisit the selection and definitions of transcatheter aortic valve implantation (TAVI) clinical endpoints to make them more suitable to the present and future needs of clinical trials. In addition, this document is intended to expand the understanding of patient risk stratification and case selection. BACKGROUND A recent study confirmed that VARC definitions have already been incorporated into clinical and research practice and represent a new standard for consistency in reporting clinical outcomes of patients with symptomatic severe aortic stenosis (AS) undergoing TAVI. However, as the clinical experience with this technology has matured and expanded, certain definitions have become unsuitable or ambiguous. METHODS AND RESULTS Two in-person meetings (held in September 2011 in Washington, DC, and in February 2012 in Rotterdam, The Netherlands) involving VARC study group members, independent experts (including surgeons, interventional and noninterventional cardiologists, imaging specialists, neurologists, geriatric specialists, and clinical trialists), the US Food and Drug Administration (FDA), and industry representatives, provided much of the substantive discussion from which this VARC-2 consensus manuscript was derived. This document provides an overview of risk assessment and patient stratification that need to be considered for accurate patient inclusion in studies. Working groups were assigned to define the following clinical endpoints: mortality, stroke, myocardial infarction, bleeding complications, acute kidney injury, vascular complications, conduction disturbances and arrhythmias, and a miscellaneous category including relevant complications not previously categorized. Furthermore, comprehensive echocardiographic recommendations are provided for the evaluation of prosthetic valve (dys)function. Definitions for the quality of life assessments are also reported. These endpoints formed the basis for several recommended composite endpoints. CONCLUSIONS This VARC-2 document has provided further standardization of endpoint definitions for studies evaluating the use of TAVI, which will lead to improved comparability and interpretability of the study results, supplying an increasingly growing body of evidence with respect to TAVI and/or surgical aortic valve replacement. This initiative and document can furthermore be used as a model during current endeavors of applying definitions to other transcatheter valve therapies (for example, mitral valve repair).
Resumo:
BACKGROUND Low testosterone, acute and chronic stress and hypercoagulation are all associated with hypertension and hypertension-related diseases. The interaction between these factors and future risk for coronary artery disease in Africans has not been fully elucidated. In this study, associations of testosterone, acute cardiovascular and coagulation stress responses with fibrinogen and von Willebrand factor in African and Caucasian men in a South African cohort were investigated. METHODS Cardiovascular variables were studied by means of beat-to-beat and ambulatory blood pressure monitoring. Fasting serum-, salivary testosterone and citrate coagulation markers were obtained from venous blood samples. Acute mental stress responses were evoked with the Stroop test. RESULTS The African group demonstrated a higher cardiovascular risk compared to Caucasian men with elevated blood pressure, low-grade inflammation, chronic hyperglycemia (HbA1c), lower testosterone levels, and elevated von Willebrand factor (VWF) and fibrinogen levels. Blunted testosterone acute mental stress responses were demonstrated in African males. In multiple regression analyses, higher circulating levels of fibrinogen and VWF in Africans were associated with a low T environment (R(2) 0.24-0.28; p≤0.01), but only circulating fibrinogen in Caucasians. Regarding endothelial function, a low testosterone environment and a profile of augmented α-adrenergic acute mental stress responses (diastolic BP, D-dimer and testosterone) were associated with circulating VWF levels in Africans (Adj R(2) 0.24; p<0.05). CONCLUSIONS An interdependence between acute mental stress, salivary testosterone, D-dimer and vascular responses existed in African males in their association with circulating VWF but no interdependence of the independent variables occurred with fibrinogen levels.
Resumo:
This article provides an overview on procedure-related issues and uncertainties in outcomes after transcatheter aortic valve implantation (TAVI). The different access sites and how to select them in an individual patient are discussed. Also, the occurrence and potential predictors of aortic regurgitation (AR) after TAVI are addressed. The different methods to quantify AR are reviewed, and it appears that accurate and reproducible quantification is suboptimal. Complications such as prosthesis-patient mismatch and conduction abnormalities (and need for permanent pacemaker) are discussed, as well as cerebrovascular events, which emphasize the development of optimal anti-coagulative strategies. Finally, recent registries have shown the adoption of TAVI in the real world, but longer follow-up studies are needed to evaluate the outcome (but also prosthesis durability). Additionally, future studies are briefly discussed, which will address the use of TAVI in pure AR and lower-risk patients.
Resumo:
An exponential increase in the use of transcatheter aortic valve implantation (TAVI) in patients with severe aortic stenosis has been witnessed over the recent years. The current article reviews different areas of uncertainty related to patient selection. The use and limitations of risk scores are addressed, followed by an extensive discussion on the value of three-dimensional imaging for prosthesis sizing and the assessment of complex valve anatomy such as degenerated bicuspid valves. The uncertainty about valvular stenosis severity in patients with a mismatch between the transvalvular gradient and the aortic valve area, and how integrated use of echocardiography and computed tomographic imaging may help, is also addressed. Finally, patients referred for TAVI may have concomitant mitral regurgitation and/or coronary artery disease and the management of these patients is discussed.
Resumo:
IMPORTANCE Owing to a considerable shift toward bioprosthesis implantation rather than mechanical valves, it is expected that patients will increasingly present with degenerated bioprostheses in the next few years. Transcatheter aortic valve-in-valve implantation is a less invasive approach for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING, AND PARTICIPANTS Correlates for survival were evaluated using a multinational valve-in-valve registry that included 459 patients with degenerated bioprosthetic valves undergoing valve-in-valve implantation between 2007 and May 2013 in 55 centers (mean age, 77.6 [SD, 9.8] years; 56% men; median Society of Thoracic Surgeons mortality prediction score, 9.8% [interquartile range, 7.7%-16%]). Surgical valves were classified as small (≤21 mm; 29.7%), intermediate (>21 and <25 mm; 39.3%), and large (≥25 mm; 31%). Implanted devices included both balloon- and self-expandable valves. MAIN OUTCOMES AND MEASURES Survival, stroke, and New York Heart Association functional class. RESULTS Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83.2% (95% CI, 80.8%-84.7%; 62 death events; 228 survivors). Patients in the stenosis group had worse 1-year survival (76.6%; 95% CI, 68.9%-83.1%; 34 deaths; 86 survivors) in comparison with the regurgitation group (91.2%; 95% CI, 85.7%-96.7%; 10 deaths; 76 survivors) and the combined group (83.9%; 95% CI, 76.8%-91%; 18 deaths; 66 survivors) (P = .01). Similarly, patients with small valves had worse 1-year survival (74.8% [95% CI, 66.2%-83.4%]; 27 deaths; 57 survivors) vs with intermediate-sized valves (81.8%; 95% CI, 75.3%-88.3%; 26 deaths; 92 survivors) and with large valves (93.3%; 95% CI, 85.7%-96.7%; 7 deaths; 73 survivors) (P = .001). Factors associated with mortality within 1 year included having small surgical bioprosthesis (≤21 mm; hazard ratio, 2.04; 95% CI, 1.14-3.67; P = .02) and baseline stenosis (vs regurgitation; hazard ratio, 3.07; 95% CI, 1.33-7.08; P = .008). CONCLUSIONS AND RELEVANCE In this registry of patients who underwent transcatheter valve-in-valve implantation for degenerated bioprosthetic aortic valves, overall 1-year survival was 83.2%. Survival was lower among patients with small bioprostheses and those with predominant surgical valve stenosis.
Resumo:
BACKGROUND Drug eluting stents for the treatment of small vessel coronary artery disease have traditionally yielded inferior clinical outcomes compared to the use of DES in large vessels. The benefit of the second-generation Resolute zotarolimus-eluting stent (R-ZES) in small vessels was examined. METHODS Two-year clinical outcomes from five combined R-ZES studies were compared between patients with small (reference vessel diameter [RVD] ≤2.5 mm; n = 1,956) and large (RVD >2.5 mm; n = 3174) vessels. RESULTS Despite a higher incidence of comorbidities in the small vessel group, there was no significant difference in target lesion failure (TLF) (10.1% vs. 8.7%; P = 0.54) at 2 years. When the subgroup of patients with diabetes was examined (n = 1,553) there was no significant difference in 2-year TLF in small compared to large vessels (11.2% vs. 11.1%; P = 0.17). Similarly, within the small vessel cohort, no significant difference was seen regarding TLF at 2 years between people with and without diabetes (11.2% vs 9.6%; P = 0.28). CONCLUSION When used for the treatment of small vessels, the R-ZES appears to provide acceptable clinical results at 2 years when compared to its performance in large vessels.