41 resultados para THUMB CONFORMATION TRANSITIONS
Resumo:
Molecular beacons (MBs) are stem-loop DNA probes used for identifying and reporting the presence and localization of nucleic acid targets in vitro and in vivo via target-dependent dequenching of fluorescence. A drawback of conventional MB design is present in the stem sequence that is necessary to keep the MBs in a closed conformation in the absence of a target, but that can participate in target binding in the open (target-on) conformation, giving rise to the possibility of false-positive results. In order to circumvent these problems, we designed MBs in which the stem was replaced by an orthogonal DNA analog that does not cross-pair with natural nucleic acids. Homo-DNA seemed to be specially suited, as it forms stable adenine-adenine base pairs of the reversed Hoogsteen type, potentially reducing the number of necessary building blocks for stem design to one. We found that MBs in which the stem part was replaced by homo-adenylate residues can easily be synthesized using conventional automated DNA synthesis. As conventional MBs, such hybrid MBs show cooperative hairpin to coil transitions in the absence of a DNA target, indicating stable homo-DNA base pair formation in the closed conformation. Furthermore, our results show that the homo-adenylate stem is excluded from DNA target binding, which leads to a significant increase in target binding selectivity
Resumo:
The existing literature suggests that transitions in software-maintenance offshore outsourcing projects are prone to knowledge transfer blockades, i.e. situations in which the activities that would yield effective knowledge transfer do not occur, and that client management involvement is central to overcome them. However, the theoretical understanding of the knowledge transfer blockade is limited, and the reactive management behavior reported in case studies suggests that practitioners may frequently be astonished by the dynamics that may give rise to the blockade. Drawing on recent research from offshore sourcing and reference theories, this study proposes a system dynamics framework that may explain why knowledge transfer blockades emerge and how and why client management can overcome the blockade. The results suggest that blockades may emerge from a vicious circle of weak learning due to cognitive overload of vendor staff and resulting negative ability attributions that result in reduced helping behavior and thus aggravate cognitive load. Client management may avoid these vicious circles by selecting vendor staff with strong prior related experience. Longer phases of coexistence of vendor staff and subject matter experts and high formal and clan controls may also mitigate vicious circles.
Resumo:
The crystalline phases of YbBr2 were investigated by powder neutron diffraction between 1.5 K and the melting point at 955 K (682 °C). The low temperature SrI2 phase is observed up to 550 K, the α-PbO2 phase between 260 K and 750 K, the CaCl2 phase between 690 K and 790 K, and the rutile phase from 790 K to the melting point. All observed phase transitions are first order, except for the second order CaCl2 to rutile transition. The transition temperatures and enthalpies were determined by differential scanning calorimetry.
Resumo:
The molecular analysis of genes influencing human height has been notoriously difficult. Genome-wide association studies (GWAS) for height in humans based on tens of thousands to hundreds of thousands of samples so far revealed ∼200 loci for human height explaining only 20% of the heritability. In domestic animals isolated populations with a greatly reduced genetic heterogeneity facilitate a more efficient analysis of complex traits. We performed a genome-wide association study on 1,077 Franches-Montagnes (FM) horses using ∼40,000 SNPs. Our study revealed two QTL for height at withers on chromosomes 3 and 9. The association signal on chromosome 3 is close to the LCORL/NCAPG genes. The association signal on chromosome 9 is close to the ZFAT gene. Both loci have already been shown to influence height in humans. Interestingly, there are very large intergenic regions at the association signals. The two detected QTL together explain ∼18.2% of the heritable variation of height in horses. However, another large fraction of the variance for height in horses results from ECA 1 (11.0%), although the association analysis did not reveal significantly associated SNPs on this chromosome. The QTL region on ECA 3 associated with height at withers was also significantly associated with wither height, conformation of legs, ventral border of mandible, correctness of gaits, and expression of the head. The region on ECA 9 associated with height at withers was also associated with wither height, length of croup and length of back. In addition to these two QTL regions on ECA 3 and ECA 9 we detected another QTL on ECA 6 for correctness of gaits. Our study highlights the value of domestic animal populations for the genetic analysis of complex traits.
Resumo:
The paper asks how cantonal education systems in Switzerland promote gender-typed school-to-work transitions and gender segregation at work. Data from the Swiss TREE youth panel study is used to analyse the impact of cantonal provision of vocational education and training (VET) on gender-typical educational trajectories. The findings show that education systems with higher VET rates have higher allocations of men in gender-(male-) typical occupational careers. The paper concludes that the pronounced and persistent gender segregation on the Swiss labor market is partly due to a prominent VET system, which urges early gender-typed occupational career decisions.
Resumo:
• Premise of the study: Isometric and allometric scaling of a conserved floral plan could provide a parsimonious mechanism for rapid and reversible transitions between breeding systems. This scaling may occur during transitions between predominant autogamy and xenogamy, contributing to the maintenance of a stable mixed mating system. • Methods: We compared nine disjunct populations of the polytypic, mixed mating species Oenothera flava (Onagraceae) to two parapatric relatives, the obligately xenogamous species O. acutissima and the mixed mating species O. triloba. We compared floral morphology of all taxa using principal component analysis (PCA) and developmental trajectories of floral organs using ANCOVA homogeneity of slopes. • Key results: The PCA revealed both isometric and allometric scaling of a conserved floral plan. Three principal components (PCs) explained 92.5% of the variation in the three species. PC1 predominantly loaded on measures of floral size and accounts for 36% of the variation. PC2 accounted for 35% of the variation, predominantly in traits that influence pollinator handling. PC3 accounted for 22% of the variation, primarily in anther–stigma distance (herkogamy). During O. flava subsp. taraxacoides development, style elongation was accelerated relative to anthers, resulting in positive herkogamy. During O. flava subsp. flava development, style elongation was decelerated, resulting in zero or negative herkogamy. Of the two populations with intermediate morphology, style elongation was accelerated in one population and decelerated in the other. • Conclusions: Isometric and allometric scaling of floral organs in North American Oenothera section Lavauxia drive variation in breeding system. Multiple developmental paths to intermediate phenotypes support the likelihood of multiple mating system transitions.
Resumo:
Tricyclo-DNA (tcDNA) is a sugar- and backbone-modified analogue of DNA that is currently tested as antisense oligonucleotide for the treatment of Duchenne muscular dystrophy. The name tricyclo-DNA is derived from the modified sugar-moiety: the deoxyribose is extended to a three-membered ring system. This modification is designed to limit the flexibility of the structure, thus giving rise to entropically stabilized hybrid duplexes formed between tcDNA and complementary DNA or RNA oligonucleotides. While the structural modifications increase the biostability of the therapeutic agent, they also render the oligonucleotide inaccessible to enzyme-based sequencing methods. Tandem mass spectrometry constitutes an alternative sequencing technique for partially and fully modified oligonucleotides. For reliable sequencing, the fragmentation mechanism of the structure in question must be understood. Therefore, the presented work evaluates the effect of the modified sugar-moiety on the gas-phase dissociation of single stranded tcDNA. Moreover, our experiments reflect the exceptional gas-phase stability of hybrid duplexes that is most noticeable in the formation of truncated duplex ions upon collision-induced dissociation. The stability of the duplex arises from the modified sugar-moiety, as the rigid structure of the tcDNA single strand minimizes the change of the entropy for the annealing. Moreover, the tc-modification gives rise to extended conformations of the nucleic acids in the gas-phase, which was studied by ion mobility spectrometry-mass spectrometry.
Resumo:
To identify novel quantitative trait loci (QTL) within horses, we performed genome-wide association studies (GWAS) based on sequence-level genotypes for conformation and performance traits in the Franches-Montagnes (FM) horse breed. Sequence-level genotypes of FM horses were derived by re-sequencing 30 key founders and imputing 50K data of genotyped horses. In total, we included 1077 FM horses genotyped for ~4 million SNPs and their respective de-regressed breeding values of the traits in the analysis. Based on this dataset, we identified a total of 14 QTL associated with 18 conformation traits and one performance trait. Therefore, our results suggest that the application of sequence-derived genotypes increases the power to identify novel QTL which were not identified previously based on 50K SNP chip data.