34 resultados para Sugar -- Drying
Resumo:
A (1→3,1→4)‐β‐D‐glucan endohydrolase [(1→3,1→4)‐β‐glucanase, EC 3.2.1.73] was detected in wheat (Triticum aestivum L.) leaves by Western analyses and activity measurements. This enzyme is able to degrade the (1→3,1→4)‐β‐glucans present in the cell walls of cereals and other grass species. In wheat, enzyme levels clearly increased during leaf development, reaching maximum values at full expansion and then decreasing upon leaf ageing. To test whether the abundance of (1→3,1→4)‐β‐glucanase might be controlled by the carbohydrate status, environmental and nutritional conditions capable of altering the leaf soluble sugar contents were used. Both the activity and enzyme protein levels rapidly and markedly increased when mature leaves were depleted of sugars (e.g. during extended dark periods), whereas elevated carbohydrate contents (e.g. following continuous illumination, glucose supply in the dark or nitrogen deficiency during a light/dark cycle) caused a rapid decrease in (1→3,1→4)‐β‐glucanase abundance or prevented its accumulation in the leaves. The physiological significance of (1→3,1→4)‐β‐glucanase accumulation under sugar depletion remains to be elucidated.
Resumo:
When plants are infected with avirulent pathogens, a selected group of plant cells rapidly die in a process commonly called the hypersensitive response (HR). Some mutations and overexpression of some unrelated genes mimic the HR lesion and associated defense responses. In all of these situations, a genetically programmed cell death pathway is activated wherein the cell actively participates in killing itself. Here we report a developmentally and environmentally regulated HR-like cell death in potato leaves constitutively expressing bacterial pyruvate decarboxylase (PDC). Lesions first appeared on the tip of fully expanded source leaves. Lesion formation was accompanied by activation of multiple defense responses and resulted in a significant resistance toPhytophthora infestans. The transgenic plants showed a five- to 12-fold increase in leaf tissue acetaldehyde and exported two- to 10-fold higher amounts of sucrose compared to the wild-type. When plants were grown at a higher temperature, both the lesion phenotype and sucrose export were restored to wild-type situations. The reduced levels of acetaldehyde at the elevated temperature suggested that the interplay of acetaldehyde with environmental and physiological factors is the inducer of lesion development. We propose that sugar metabolism plays a crucial role in the execution of cell death programs in plants.
Resumo:
In transgenic Arabidopsis a patatin class I promoter from potato is regulated by sugars and proline (Pro), thus integrating signals derived from carbon and nitrogen metabolism. In both cases a signaling cascade involving protein phosphatases is involved in induction. Other endogenous genes are also regulated by both Pro and carbohydrates. Chalcone synthase (CHS) gene expression is induced by both, whereas the Pro biosynthetic Δ1-pyrroline-5-carboxylate synthetase (P5CS) is induced by high Suc concentrations but repressed by Pro, and Pro dehydrogenase (ProDH) is inversely regulated. The mutantrsr1-1, impaired in sugar dependent induction of the patatin promoter, is hypersensitive to low levels of external Pro and develops autofluorescence and necroses. Toxicity of Pro can be ameliorated by salt stress and exogenously supplied metabolizable carbohydrates. The rsr1-1 mutant shows a reduced response regarding sugar induction of CHS andP5CS expression. ProDH expression is de-repressed in the mutant but still down-regulated by sugar. Pro toxicity seems to be mediated by the degradation intermediate Δ1-pyrroline-5-carboxylate. Induction of the patatin promoter by carbohydrates and Pro, together with the Pro hypersensitivity of the mutant rsr1-1, demonstrate a new link between carbon/nitrogen and stress responses.