51 resultados para Striatum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about hemispheric lateralization of subcortical structures. Here, we show a higher expression of the subunit NR2A of the NMDA receptor mRNA in the striatum and of vGluT1 mRNA in the cingulate cortex, in the left hemisphere compared to the right one. This suggests a lateralization of the glutamatergic cortico-subcortical system, at the level of postsynaptic receptors as well as at the level of corticostriatal projections. Such lateralization could play a role in asymmetric diseases like Parkinson's disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trefoil factor 1 (TFF1) belongs to a family of secreted peptides with a characteristic tree-looped trefoil structure. TFFs are mainly expressed in the gastrointestinal tract where they play a critical role in the function of the mucosal barrier. TFF1 has been suggested as a neuropeptide, but not much is known about its expression and function in the central nervous system. We investigated the expression of TFF1 in the developing and adult rat midbrain. In the adult ventral mesencephalon, TFF1-immunoreactive (-ir) cells were predominantly found in the substantia nigra pars compacta (SNc), the ventral tegmental area (VTA) and in periaqueductal areas. While around 90% of the TFF1-ir cells in the SNc co-expressed tyrosine hydroxylase (TH), only a subpopulation of the TH-ir neurons expressed TFF1. Some TFF1-ir cells in the SNc co-expressed the calcium-binding proteins calbindin or calretinin and nearly all were NeuN-ir confirming a neuronal phenotype, which was supported by lack of co-localization with the astroglial marker glial fibrillary acidic protein (GFAP). Interestingly, at postnatal (P) day 7 and P14, a significantly higher proportion of TH-ir neurons in the SNc co-expressed TFF1 as compared to P21. In contrast, the proportion of TFF1-ir cells expressing TH remained unchanged during postnatal development. Furthermore, significantly more TH-ir neurons expressed TFF1 in the SNc, compared to the VTA at all four time-points investigated. Injection of the tracer fluorogold into the striatum of adult rats resulted in retrograde labeling of several TFF1 expressing cells in the SNc showing that a significant fraction of the TFF1-ir cells were projection neurons. This was also reflected by unilateral loss of TFF1-ir cells in SNc of 6-hydroxylase-lesioned hemiparkinsonian rats. In conclusion, we show for the first time that distinct subpopulations of midbrain dopaminergic neurons express TFF1, and that this expression pattern is altered in a rat model of Parkinson's disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genes for the dopamine transporter (DAT) and the D-Amino acid oxidase activator (DAOA or G72) have been independently implicated in the risk for schizophrenia and in bipolar disorder and/or their related intermediate phenotypes. DAT and G72 respectively modulate central dopamine and glutamate transmission, the two systems most robustly implicated in these disorders. Contemporary studies have demonstrated that elevated dopamine function is associated with glutamatergic dysfunction in psychotic disorders. Using functional magnetic resonance imaging we examined whether there was an interaction between the effects of genes that influence dopamine and glutamate transmission (DAT and G72) on regional brain activation during verbal fluency, which is known to be abnormal in psychosis, in 80 healthy volunteers. Significant interactions between the effects of G72 and DAT polymorphisms on activation were evident in the striatum, parahippocampal gyrus, and supramarginal/angular gyri bilaterally, the right insula, in the right pre-/postcentral and the left posterior cingulate/retrosplenial gyri (P < 0.05, FDR-corrected across the whole brain). This provides evidence that interactions between the dopamine and the glutamate system, thought to be altered in psychosis, have an impact in executive processing which can be modulated by common genetic variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The brain reward circuitry innervated by dopamine is critically disturbed in schizophrenia. This study aims to investigate the role of dopamine-related brain activity during prediction of monetary reward and loss in first episode schizophrenia patients. Methods We measured blood–oxygen-level dependent (BOLD) activity in 10 patients with schizophrenia (SCH) and 12 healthy controls during dopamine depletion with α-methylparatyrosine (AMPT) and during a placebo condition (PLA). Results AMPT reduced the activation of striatal and cortical brain regions in SCH. In SCH vs. controls reduced activation was found in the AMPT condition in several regions during anticipation of reward and loss, including areas of the striatum and frontal cortex. In SCH vs. controls reduced activation of the superior temporal gyrus and posterior cingulate was observed in PLA during anticipation of rewarding stimuli. PLA patients had reduced activation in the ventral striatum, frontal and cingulate cortex in anticipation of loss. The findings of reduced dopamine-related brain activity during AMPT were verified by reduced levels of dopamine in urine, homovanillic-acid in plasma and increased prolactin levels. Conclusions Our results indicate that dopamine depletion affects functioning of the cortico-striatal reward circuitry in SCH. The findings also suggest that neuronal functions associated with dopamine neurotransmission and attribution of salience to reward predicting stimuli are altered in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a neuroscientific study of aesthetic judgments on written texts. In an fMRI experiment participants read a number of proverbs without explicitly evaluating them. In a post-scan rating they rated each item for familiarity and beauty. These individual ratings were correlated with the functional data to investigate the neural correlates of implicit aesthetic judgments. We identified clusters in which BOLD activity was correlated with individual post-scan beauty ratings. This indicates that some spontaneous aesthetic evaluation takes place during reading, even if not required by the task. Positive correlations were found in the ventral striatum and in medial prefrontal cortex, likely reflecting the rewarding nature of sentences that are aesthetically pleasing. On the contrary, negative correlations were observed in the classic left frontotemporal reading network. Midline structures and bilateral temporo-parietal regions correlated positively with familiarity, suggesting a shift from the task-network towards the default network with increasing familiarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND In Parkinson's disease (PD), bradykinesia, or slowness of movement, only appears after a large striatal dopamine depletion. Compensatory mechanisms probably play a role in this delayed appearance of symptoms. OBJECTIVE Our hypothesis is that the striatal direct and indirect pathways participate in these compensatory mechanisms. METHODS We used the unilateral 6-hydroxydopamine (6-OHDA) rat model of PD and control animals. Four weeks after the lesion, the spontaneous locomotor activity of the rats was measured and then the animals were killed and their brain extracted. We quantified the mRNA expression of markers of the striatal direct and indirect pathways as well as the nigral expression of dopamine transporter (DAT) and tyrosine hydroxylase (TH) mRNA. We also carried out an immunohistochemistry for the striatal TH protein expression. RESULTS As expected, the unilateral 6-OHDA rats presented a tendency to an ipsilateral head turning and a low locomotor velocity. In 6-OHDA rats only, we observed a significant and positive correlation between locomotor velocity and both D1-class dopamine receptor (D1R) (direct pathway) and enkephalin (ENK) (indirect pathway) mRNA in the lesioned striatum, as well as between D1R and ENK mRNA. CONCLUSIONS Our results demonstrate a strong relationship between both direct and indirect pathways and spontaneous locomotor activity in the parkinsonian rat model. We suggest a synergy between both pathways which could play a role in compensatory mechanisms and may contribute to the delayed appearance of bradykinesia in PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Music is an intriguing stimulus widely used in movies to increase the emotional experience. However, no brain imaging study has to date examined this enhancement effect using emotional pictures (the modality mostly used in emotion research) and musical excerpts. Therefore, we designed this functional magnetic resonance imaging study to explore how musical stimuli enhance the feeling of affective pictures. In a classical block design carefully controlling for habituation and order effects, we presented fearful and sad pictures (mostly taken from the IAPS) either alone or combined with congruent emotional musical excerpts (classical pieces). Subjective ratings clearly indicated that the emotional experience was markedly increased in the combined relative to the picture condition. Furthermore, using a second-level analysis and regions of interest approach, we observed a clear functional and structural dissociation between the combined and the picture condition. Besides increased activation in brain areas known to be involved in auditory as well as in neutral and emotional visual-auditory integration processes, the combined condition showed increased activation in many structures known to be involved in emotion processing (including for example amygdala, hippocampus, parahippocampus, insula, striatum, medial ventral frontal cortex, cerebellum, fusiform gyrus). In contrast, the picture condition only showed an activation increase in the cognitive part of the prefrontal cortex, mainly in the right dorsolateral prefrontal cortex. Based on these findings, we suggest that emotional pictures evoke a more cognitive mode of emotion perception, whereas congruent presentations of emotional visual and musical stimuli rather automatically evoke strong emotional feelings and experiences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trust and betrayal of trust are ubiquitous in human societies. Recent behavioral evidence shows that the neuropeptide oxytocin increases trust among humans, thus offering a unique chance of gaining a deeper understanding of the neural mechanisms underlying trust and the adaptation to breach of trust. We examined the neural circuitry of trusting behavior by combining the intranasal, double-blind, administration of oxytocin with fMRI. We find that subjects in the oxytocin group show no change in their trusting behavior after they learned that their trust had been breached several times while subjects receiving placebo decrease their trust. This difference in trust adaptation is associated with a specific reduction in activation in the amygdala, the midbrain regions, and the dorsal striatum in subjects receiving oxytocin, suggesting that neural systems mediating fear processing (amygdala and midbrain regions) and behavioral adaptations to feedback information (dorsal striatum) modulate oxytocin's effect on trust. These findings may help to develop deeper insights into mental disorders such as social phobia and autism, which are characterized by persistent fear or avoidance of social interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Despite immense efforts into development of new antidepressant drugs, the increases of serotoninergic and catechominergic neurotransmission have remained the two major pharmacodynamic principles of current drug treatments for depression. Consequently, psychopathological or biological markers that predict response to drugs that selectively increase serotonin and/or catecholamine neurotransmission hold the potential to optimize the prescriber’s selection among currently available treatment options. The aim of this study was to elucidate the differential symptomatology and neurophysiology in response to reductions in serotonergic versus catecholaminergic neurotransmission in subjects at high risk of depression recurrence. Methods: Using identical neuroimaging procedures with [18F] fluorodeoxyglucose positron emission tomography after tryptophan depletion (TD) and catecholamine depletion (CD), subjects with remitted depression were compared to healthy controls in a double-blind, randomized, crossover design. Results: While TD induced significantly more depressed mood, sadness and hopelessness than CD, CD induced more inactivity, concentration difficulties, lassitude and somatic anxiety than TD. CD specifically increased glucose metabolism in the bilateral ventral striatum and decreased glucose metabolism in the bilateral orbitofrontal cortex, whereas TD specifically increased metabolism in the right prefrontal cortex and the posterior cingulate cortex (PCC). While we found direct associations between changes in brain metabolism and induced depressive symptoms following CD, the relationship between neural activity and symptoms was less clear after TD. Conclusions: In conclusion, this study showed that serotonin and catecholamines play common and differential roles in the pathophysiology of depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE Sleep disruption in the acute phase after stroke has detrimental effects on recovery in both humans and animals. Conversely, the effect of sleep promotion remains unclear. Baclofen (Bac) is a known non-rapid eye movement (NREM) sleep-promoting drug in both humans and animals. The aim of this study was to investigate the effect of Bac on stroke recovery in a rat model of focal cerebral ischemia (isch). METHODS Rats, assigned to three experimental groups (Bac/isch, saline/isch, or Bac/sham), were injected twice daily for 10 consecutive days with Bac or saline, starting 24 h after induction of stroke. The sleep-wake cycle was assessed by EEG recordings and functional motor recovery by single pellet reaching test (SPR). In order to identify potential neuroplasticity mechanisms, axonal sprouting and neurogenesis were evaluated. Brain damage was assessed by Nissl staining. RESULTS Repeated Bac treatment after ischemia affected sleep, motor function, and neuroplasticity, but not the size of brain damage. NREM sleep amount was increased significantly during the dark phase in Bac/isch compared to the saline/isch group. SPR performance dropped to 0 immediately after stroke and was recovered slowly thereafter in both ischemic groups. However, Bac-treated ischemic rats performed significantly better than saline-treated animals. Axonal sprouting in the ipsilesional motor cortex and striatum, and neurogenesis in the peri-infarct region were significantly increased in Bac/isch group. CONCLUSION Delayed repeated Bac treatment after stroke increased NREM sleep and promoted both neuroplasticity and functional outcome. These data support the hypothesis of the role of sleep as a modulator of poststroke recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans often evaluate their abilities by comparing their personal performance with that of others. For this process, it is critical whether the comparison turns out in one's favor or against it. Here, we investigate how social comparisons of performance are encoded and integrated on the neural level. We collected functional magnetic resonance images while subjects answered questions in a knowledge quiz that was related to their profession. After each question, subjects received a feedback about their personal performance, followed by a feedback about the performance of a reference group who had been quizzed beforehand. Based on the subjects' personal performance, we divided trials in downward and upward comparisons. We found that upward comparisons correlated with activity in the dorsolateral prefrontal cortex and the anterior insula. Downward comparisons were associated with increased activation in the ventral striatum (VS), the medial orbitofrontal cortex and the ventral anterior cingulate cortex (ACC). The extent to which subjects outperformed the reference group modulated the activity in the VS and in the dorsal ACC. We suggest that the co-activation of the VS and the dorsal ACC contributes to the integration of downward comparisons into the evaluation of personal performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individual risk preferences have a large influence on decisions, such as financial investments, career and health choices, or gambling. Decision making under risk has been studied both behaviorally and on a neural level. It remains unclear, however, how risk attitudes are encoded and integrated with choice. Here, we investigate how risk preferences are reflected in neural regions known to process risk. We collected functional magnetic resonance images of 56 human subjects during a gambling task (Preuschoff et al., 2006). Subjects were grouped into risk averters and risk seekers according to the risk preferences they revealed in a separate lottery task. We found that during the anticipation of high-risk gambles, risk averters show stronger responses in ventral striatum and anterior insula compared to risk seekers. In addition, risk prediction error signals in anterior insula, inferior frontal gyrus, and anterior cingulate indicate that risk averters do not dissociate properly between gambles that are more or less risky than expected. We suggest this may result in a general overestimation of prospective risk and lead to risk avoidance behavior. This is the first study to show that behavioral risk preferences are reflected in the passive evaluation of risky situations. The results have implications on public policies in the financial and health domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal work implicates the brain-derived neurotrophic factor (BDNF) in function of the ventral striatum (VS), a region known for its role in processing valenced feedback. Recent evidence in humans shows that BDNF Val66Met polymorphism modulates VS activity in anticipation of monetary feedback. However, it remains unclear whether the polymorphism impacts the processing of self-attributed feedback differently from feedback attributed to an external agent. In this study, we emphasize the importance of the feedback attribution because agency is central to computational accounts of the striatum and cognitive accounts of valence processing. We used functional magnetic resonance imaging and a task, in which financial gains/losses are either attributable to performance (self-attributed, SA) or chance (externally-attributed, EA) to ask whether BDNF Val66Met polymorphism predicts VS activity. We found that BDNF Val66Met polymorphism influenced how feedback valence and agency information were combined in the VS and in the right inferior frontal junction (IFJ). Specifically, Met carriers' VS response to valenced feedback depended on agency information, while Val/Val carriers' VS response did not. This context-specific modulation of valence effectively amplified VS responses to SA losses in Met carriers. The IFJ response to SA losses also differentiated Val/Val from Met carriers. These results may point to a reduced allocation of attention and altered motivational salience to SA losses in Val/Val compared to Met carriers. Implications for major depressive disorder are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frontal alpha band asymmetry (FAA) is a marker of altered reward processing in major depressive disorder (MDD), associated with reduced approach behavior and withdrawal. However, its association with brain metabolism remains unclear. The aim of this study is to investigate FAA and its correlation with resting – state cerebral blood flow (rCBF). We hypothesized an association of FAA with regional rCBF in brain regions relevant for reward processing and motivated behavior, such as the striatum. We enrolled 20 patients and 19 healthy subjects. FAA scores and rCBF were quantified with the use of EEG and arterial spin labeling. Correlations of the two were evaluated, as well as the association with FAA and psychometric assessments of motivated behavior and anhedonia. Patients showed a left – lateralized pattern of frontal alpha activity and a correlation of FAA lateralization with subscores of Hamilton Depression Rating Scale linked to motivated behavior. An association of rCBF and FAA scores was found in clusters in the dorsolateral prefrontal cortex bilaterally (patients) and in the left medial frontal gyrus, in the right caudate head and in the right inferior parietal lobule (whole group). No correlations were found in healthy controls. Higher inhibitory right – lateralized alpha power was associated with lower rCBF values in prefrontal and striatal regions, predominantly in the right hemisphere, which are involved in the processing of motivated behavior and reward. Inhibitory brain activity in the reward system may contribute to some of the motivational problems observed in MDD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite immense efforts into development of new antidepressant drugs, the increases of serotoninergic and catecholaminergic neurotransmission have remained the two major pharmacodynamic principles of current drug treatments for depression. Consequently, psychopathological or biological markers that predict response to drugs that selectively increase serotonin and/or catecholamine neurotransmission hold the potential to optimize the prescriber's selection among currently available treatment options. The aim of this study was to elucidate the differential symptomatology and neurophysiology in response to reductions in serotonergic versus catecholaminergic neurotransmission in subjects at high risk of depression recurrence. Using identical neuroimaging procedures with [(18)F] fluorodeoxyglucose positron emission tomography after tryptophan depletion (TD) and catecholamine depletion (CD), subjects with remitted depression were compared with healthy controls in a double-blind, randomized, crossover design. Although TD induced significantly more depressed mood, sadness and hopelessness than CD, CD induced more inactivity, concentration difficulties, lassitude and somatic anxiety than TD. CD specifically increased glucose metabolism in the bilateral ventral striatum and decreased glucose metabolism in the bilateral orbitofrontal cortex, whereas TD specifically increased metabolism in the right prefrontal cortex and the posterior cingulate cortex. Although we found direct associations between changes in brain metabolism and induced depressive symptoms following CD, the relationship between neural activity and symptoms was less clear after TD. In conclusion, this study showed that serotonin and catecholamines have common and differential roles in the pathophysiology of depression.