42 resultados para Stick-slip Instability
Resumo:
It is widely accepted that equine sarcoid disease, the most common skin associated neoplasm in equids, is induced by bovine papillomavirus (BPV-1). Although BPV-1 DNA has been found in almost all examined sarcoids so far, its detailed impact on the horse's host cell metabolism is largely unknown. We used equine fibroblast cell lines originating from sarcoid biopsies to study BPV-1-associated changes on DNA methylation status and oxidative stress parameters. Sarcoid-derived fibroblasts manifested increased proliferation in vitro, transcriptional rDNA activity (NORs expression) and DNA hypomethylation compared to control cells. Cells isolated from equine sarcoids suffered from oxidative stress: the expression of antioxidant enzymes was decreased and the superoxide production was increased. Moreover, increased ploidy, oxidative DNA damage and micronuclei formation was monitored in sarcoid cells. We postulate that both altered DNA methylation status and redox milieu may affect genomic stability in BPV-1-infected cells and in turn contribute to sarcoid pathology.
Resumo:
Lumbar spinal instability (LSI) is a common spinal disorder and can be associated with substantial disability. The concept of defining clinically relevant classifications of disease or 'target condition' is used in diagnostic research. Applying this concept to LSI we hypothesize that a set of clinical and radiological criteria can be developed to identify patients with this target condition who are at high risk of 'irreversible' decompensated LSI for whom surgery becomes the treatment of choice. In LSI, structural deterioration of the lumbar disc initiates a degenerative cascade of segmental instability. Over time, radiographic signs become visible: traction spurs, facet joint degeneration, misalignment, stenosis, olisthesis and de novo scoliosis. Ligaments, joint capsules, local and distant musculature are the functional elements of the lumbar motion segment. Influenced by non-functional factors, these functional elements allow a compensation of degeneration of the motion segment. Compensation may happen on each step of the degenerative cascade but cannot reverse it. However, compensation of LSI may lead to an alleviation or resolution of clinical symptoms. In return, the target condition of decompensation of LSI may cause the new occurrence of symptoms and pain. Functional compensation and decompensation are subject to numerous factors that can change which makes estimation of an individual's long-term prognosis difficult. Compensation and decompensation may influence radiographic signs of degeneration, e.g. the degree of misalignment and segmental angulation caused by LSI is influenced by the tonus of the local musculature. This conceptual model of compensation/decompensation may help solve the debate on functional and psychosocial factors that influence low back pain and to establish a new definition of non-specific low back pain. Individual differences of identical structural disorders could be explained by compensated or decompensated LSI leading to changes in clinical symptoms and pain. Future spine surgery will have to carefully define and measure functional aspects of LSI, e.g. to identify a point of no return where multidisciplinary interventions do not allow a re-compensation and surgery becomes the treatment of choice.
Resumo:
The main purpose of this study was to evaluate the effect that mechanical stresses acting under the slipping driving wheels of agricultural equipment have on the soil’s pore system and water flow process (surface runoff generation during extreme event). The field experiment simulated low slip (1%) and high slip (27%) on a clay loam. The stress on the soil surface and changes in the amounts of water flowing from macropores were simulated using the Tires/tracks And Soil Compaction (TASC) tool and the MACRO model, respectively. Taking a 65 kW tractor on a clay loam as a reference, results showed that an increase in slip of the rear wheels from 1% to 27% caused normal stress to increase from 90.6 kPa to 104.4 kPa at the topsoil level, and the maximum shear contact stress to rise drastically from 6.0 kPa to 61.6 kPa. At 27% slip, topsoil was sheared and displaced over a distance of 0.35 m. Excessive normal and shear stress values with high slip caused severe reductions of the soil’s macroporosity, saturated hydraulic conductivity, and water quantities flowing from topsoil macropores. Assuming that, under conditions of intense rainfall on sloping land, a loss in vertical water flow would mean an increase in surface runoff, we calculated that a rainfall intensity of 100 mm h-1 and a rainfall duration of 1 h would increase the runoff coefficient to 0.79 at low slip and to 1.00 at high slip, indicating that 100% of rainwater would be transformed into surface runoff at high slip. We expect that these effects have a significant impact on soil erosion and floods in steeper terrain (slope > 15°) and across larger surface areas (> 16 m2) than those included in our study.
Resumo:
We investigated age differences in instability, contingency, and level of self-esteem from age 13 to 72 years, using data from 1386 individuals who participated in a diary study over 25 days. Instability and contingency of self-esteem decreased from adolescence to old age, whereas level of self-esteem increased. Big Five personality traits predicted the level, but not the slope, of the trajectories of self-esteem characteristics. Age differences in self-esteem characteristics did not merely reflect age differences in instability and level of positive and negative affect. Finally, self-esteem characteristics showed a stable pattern of interrelations across the life span. Overall, the findings suggest that people’s self-esteem tends to become better adjusted—i.e., more stable, less contingent, and higher—across the life course.
Resumo:
The biomechanical properties of the atlanto-axial joint in a young Yorkshire Terrier dog with spontaneous atlantoaxial instability were compared to those of another young toy breed dog with a healthy atlantoaxial joint. The range-of-motion was increased in flexion and lateral bending in the unstable joint. In addition, lateral bending led to torsion and dorsal dislocation of the axis within the atlas. On gross examination, the dens ligaments were absent and a longitudinal tear of the tectorial membrane was observed. These findings suggest that both ventral and lateral flexion may lead to severe spinal cord compression, and that the tectorial membrane may play a protective role in some cases of atlantoaxial instability.
Resumo:
BACKGROUND In some hips with cam-type femoroacetabular impingement (FAI), we observed a morphology resembling a more subtle form of slipped capital femoral epiphysis (SCFE). Theoretically, the morphology in these hips should differ from hips with a primary cam-type deformity. QUESTIONS/PURPOSES We asked if (1) head-neck offset; (2) epiphyseal angle; and (3) tilt angle differ among hips with a slip-like morphology, idiopathic cam, hips after in situ pinning of SCFE, and normal hips; and (4) what is the prevalence of a slip-like morphology among cam-type hips? METHODS We retrospectively compared the three-dimensional anatomy of hips with a slip-like morphology (29 hips), in situ pinning for SCFE (eight hips), idiopathic cam deformity (171 hips), and 30 normal hips using radial MRI arthrography. Normal hips were derived from 17 asymptomatic volunteers. All other hips were recruited from a series of 277 hips (243 patients) seen at a specialized academic hip center between 2006 and 2010. Forty-one hips with isolated pincer deformity were excluded. Thirty-six of 236 hips had a known cause of cam impingement (secondary cam), including eight hips after in situ pinning of SCFE (postslip group). The 200 hips with a primary cam were separated in hips with a slip-like morphology (combination of positive fovea sign [if the neck axis did not intersect with the fovea capitis] and a tilt angle [between the neck axis and perpendicular to the basis of the epiphysis] exceeding 4°) and hips with an idiopathic cam. We evaluated offset ratio, epiphyseal angle (angle between the neck axis and line connecting the center of the femoral head and the point where the physis meets the articular surface), and tilt angle circumferentially around the femoral head-neck axis. Prevalence of slip-like morphology was determined based on the total of 236 hips with cam deformities. RESULTS Offset ratio was decreased anterosuperiorly in idiopathic cam, slip-like, and postslip (eg, 1 o'clock position with a mean offset ranging from 0.00 to 0.14; p < 0.001 for all groups) compared with normal hips (0.25 ± 0.06 [95% confidence interval, 0.13-0.37]) and increased posteroinferiorly in slip-like (eg, 8 o'clock position, 0.5 ± 0.09 [0.32-0.68]; p < 0.001) and postslip groups (0.55 ± 0.12 [0.32-0.78]; p < 0.001) and did not differ in idiopathic cam (0.32 ± 0.09 [0.15-0.49]; p = 0.323) compared with normal (0.31 ± 0.07 [0.18-0.44]) groups. Epiphyseal angle was increased anterosuperiorly in the slip-like (eg, 1 o'clock position, 70° ± 9° [51°-88°]; p < 0.001) and postslip groups (75° ± 13° [49°-100°]; p = 0.008) and decreased in idiopathic cam (50° ± 8° [35°-65°]; p < 0.001) compared with normal hips (58° ± 8° [43°-74°]). Posteroinferiorly, epiphyseal angle was decreased in slip-like (eg, 8 o'clock position, 54° ± 10° [34°-74°]; p < 0.001) and postslip (44° ± 11° [23°-65°]; p < 0.001) groups and did not differ in idiopathic cam (76° ± 8° [61°-91°]; p = 0.099) compared with normal (73° ± 7° [59°-88°]) groups. Tilt angle increased in slip-like (eg, 2/8 o'clock position, 14° ± 8° [-1° to 30°]; p < 0.001) and postslip hips (29° ± 10° [9°-48°]; p < 0.001) and decreased in hips with idiopathic cam (-7° ± 5° [-17° to 4°]; p < 0.001) compared with normal (-1° ± 5° [-10° to 8°]) hips. The prevalence of a slip-like morphology was 12%. CONCLUSIONS The slip-like morphology is the second most frequent pathomorphology in hips with primary cam deformity. MRI arthrography of the hip allows identifying a slip-like morphology, which resembles hips after in situ pinning of SCFE and distinctly differs from hips with idiopathic cam. These results support previous studies reporting that SCFE might be a risk factor for cam-type FAI.
An Increased Iliocapsularis-to-rectus-femoris Ratio Is Suggestive for Instability in Borderline Hips
Resumo:
BACKGROUND The iliocapsularis muscle is an anterior hip structure that appears to function as a stabilizer in normal hips. Previous studies have shown that the iliocapsularis is hypertrophied in developmental dysplasia of the hip (DDH). An easy MR-based measurement of the ratio of the size of the iliocapsularis to that of adjacent anatomical structures such as the rectus femoris muscle might be helpful in everyday clinical use. QUESTIONS/PURPOSES We asked (1) whether the iliocapsularis-to-rectus-femoris ratio for cross-sectional area, thickness, width, and circumference is increased in DDH when compared with hips with acetabular overcoverage or normal hips; and (2) what is the diagnostic performance of these ratios to distinguish dysplastic from pincer hips? METHODS We retrospectively compared the anatomy of the iliocapsularis muscle between two study groups with symptomatic hips with different acetabular coverage and a control group with asymptomatic hips. The study groups were selected from a series of patients seen at the outpatient clinic for DDH or femoroacetabular impingement. The allocation to a study group was based on conventional radiographs: the dysplasia group was defined by a lateral center-edge (LCE) angle of < 25° with a minimal acetabular index of 14° and consisted of 45 patients (45 hips); the pincer group was defined by an LCE angle exceeding 39° and consisted of 37 patients (40 hips). The control group consisted of 30 asymptomatic hips (26 patients) with MRIs performed for nonorthopaedic reasons. The anatomy of the iliocapsularis and rectus femoris muscle was evaluated using MR arthrography of the hip and the following parameters: cross-sectional area, thickness, width, and circumference. The iliocapsularis-to-rectus-femoris ratio of these four anatomical parameters was then compared between the two study groups and the control group. The diagnostic performance of these ratios to distinguish dysplasia from protrusio was evaluated by calculating receiver operating characteristic (ROC) curves and the positive predictive value (PPV) for a ratio > 1. Presence and absence of DDH (ground truth) were determined on plain radiographs using the previously mentioned radiographic parameters. Evaluation of radiographs and MRIs was performed in a blinded fashion. The PPV was chosen because it indicates how likely a hip is dysplastic if the iliocapsularis-to-rectus-femoris ratio was > 1. RESULTS The iliocapsularis-to-rectus-femoris ratio for cross-sectional area, thickness, width, and circumference was increased in hips with radiographic evidence of DDH (ratios ranging from 1.31 to 1.35) compared with pincer (ratios ranging from 0.71 to 0.90; p < 0.001) and compared with the control group, the ratio of cross-sectional area, thickness, width, and circumference was increased (ratios ranging from 1.10 to 1.15; p ranging from 0.002 to 0.039). The area under the ROC curve ranged from 0.781 to 0.852. For a one-to-one iliocapsularis-to-rectus-femoris ratio, the PPV was 89% (95% confidence interval [CI], 73%-96%) for cross-sectional area, 77% (95% CI, 61%-88%) for thickness, 83% (95% CI, 67%-92%) for width, and 82% (95% CI, 67%-91%) for circumference. CONCLUSIONS The iliocapsularis-to-rectus-femoris ratio seems to be a valuable secondary sign of DDH. This parameter can be used as an adjunct for clinical decision-making in hips with borderline hip dysplasia and a concomitant cam-type deformity to identify the predominant pathology. Future studies will need to prove this finding can help clinicians determine whether the borderline dysplasia accounts for the hip symptoms with which the patient presents. LEVEL OF EVIDENCE Level III, prognostic study.
Resumo:
The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.
Resumo:
Analogue model experiments using both brittle and viscous materials were performed to investigate the development and interaction of strike-slip faults in zones of distributed shear deformation. At low strain, bulk dextral shear deformation of an initial rectangular model is dominantly accommodated by left-stepping, en echelon strike-slip faults (Riedel shears, R) that form in response to the regional (bulk) stress field. Push-up zones form in the area of interaction between adjacent left-stepping Riedel shears. In cross sections, faults bounding push-up zones have an arcuate shape or merge at depth. Adjacent left-stepping R shears merge by sideways propagation or link by short synthetic shears that strike subparallel to the bulk shear direction. Coalescence of en echelon R shears results in major, through-going faults zones (master faults). Several parallel master faults develop due to the distributed nature of deformation. Spacing between master faults is related to the thickness of the brittle layers overlying the basal viscous layer. Master faults control to a large extent the subsequent fault pattern. With increasing strain, relatively short antithetic and synthetic faults develop mostly between old, but still active master faults. The orientation and evolution of the new faults indicate local modifications of the stress field. In experiments lacking lateral borders, closely spaced parallel antithetic faults (cross faults) define blocks that undergo clockwise rotation about a vertical axis with continuing deformation. Fault development and fault interaction at different stages of shear strain in our models show similarities with natural examples that have undergone distributed shear.
Resumo:
We perform density functional calculations to investigate the structure of the intermetallic alloy FeRh under epitaxial strain. Bulk FeRh exhibits a metamagnetic transition from a low-temperature antiferromagnetic (AFM) phase to a ferromagnetic phase at 350 K, and its strain dependence is of interest for tuning the transition temperature to the room-temperature operating conditions of typical memory devices. We find an unusually strong dependence of the structural energetics on the choice of exchange-correlation functional, with the usual local density approximation yielding the wrong ground-state structure, and generalized gradient (GGA) extensions being in better agreement with the bulk experimental structure. Using the GGA we show the existence of a metastable face-centered-cubic-like AFM structure that is reached from the ground-state body-centered-cubic-like AFM structure by following the epitaxial Bain path. We show that the behavior is well described using nonlinear elasticity theory, which captures the softening and eventual sign change of the orthorhombic shear modulus under compressive strain, consistent with this structural instability. Finally, we predict the existence of an additional unit-cell-doubling lattice instability, which should be observable at low temperature.