53 resultados para Steroid-hormones
Resumo:
The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, beta-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood.
Resumo:
In cardiac muscle the amplitude of Ca(2+) transients can be increased by enhancing Ca(2+) influx. Among the processes leading to increased Ca(2+) influx, agonists of the L-type Ca(2+)-channel can play an important role. Known pharmacological Ca(2+)-channel agonists act on different binding sites on the channel protein, which may lead not only to enhanced peak currents, but also to distinct changes in other biophysical characteristics of the current. In this study, membrane currents were recorded with the patch-clamp technique in the whole-cell configuration in guinea pig isolated ventricular myocytes in combination with confocal fluorescence Ca(2+) imaging techniques and a variety of pharmacological tools. Testing a new positive inotropic steroid-like compound, we found that it increased the L-type Ca(2+)-current by 2.5-fold by shifting the voltage-dependence of activation by 20.2 mV towards negative potentials. The dose-response relationship revealed two vastly different affinities (EC(50(high-affinity))=4.5+/-1.7 nM, EC(50(low-affinity))=8.0+/-1.1 microM) exhibiting differential pharmacological interactions with three classes of Ca(2+)-current antagonists, suggesting more than one binding site on the channel protein. Therefore, we identified and characterized a novel positive inotropic compound (F90927) as a member of a new class of Ca(2+)-channel agonists exhibiting unique features, which set it apart from other presently known L-type Ca(2+)-channel agonists.
Resumo:
Here we report a novel steroid-like compound F90363, exhibiting positive inotropy in vivo and in vitro in various cardiac muscle preparations. F90363 is a racemic mixture composed of the stereoisomers (-)-F90926 and (+)-F90927. Only F90927 exerted positive inotropy, while F90926 induced a weak negative inotropy, but only at concentrations 10(3) times higher than F90927 and most likely resulting from an unspecific interaction. The rapid time course of the action of F90927 suggested a direct interaction with a cellular target rather than a genomic alteration. We could identify the L-type Ca2+ current I(Ca(L)) as a main target of F90927, while excluding other components of cardiac Ca2+ signalling as potential contributors. In addition, several other signaling pathways known to lead to positive inotropy (e.g. alpha- and beta-adrenergic stimulation, cAMP pathways) could be excluded as targets of F90927. However, vessel contraction and stiffening of the cardiac muscle at high doses (>30 microM, 0.36 mg kg(-1), respectively) prevent the use of F90927 as a candidate for drug development. Since the compound may still find valuable applications in research, the aim of the present study was to identify the cellular target and the mechanism of inotropy of F90927.
Resumo:
The usual treatment of dogs with inflammatory bowel disease (IBD) consists of administration of immunosuppressive doses of steroids. However, some dogs are refractory to steroid treatment and pose a significant challenge to the veterinarian. Because cyclosporine A (cyA) has been shown to be effective in steroid-resistant IBD in humans, the purpose of this study was to investigate the pharmacokinetics and clinical efficacy of PO cyA treatment in dogs with steroid-refractory IBD (n = 14). All dogs were treated with cyA 5 mg/kg PO q24h for a period of 10 weeks. A clinical activity score was assigned to assess severity of clinical signs before and after treatment. The total number of infiltrating lymphocytes and T cells in duodenal biopsies were assessed before and after treatment in 9 dogs. In addition, serum concentration of cyA was measured in 8 dogs over a 24-hour period. Pharmacokinetic profiles in dogs with IBD were similar to those of healthy dogs. Improvement of clinical signs was observed in 12 of 14 dogs with IBD. Median clinical activity score after treatment with cyA was significantly reduced from a median score of 9 to a median score of 5 (P = 0.001). T cell numbers in duodenal biopsies were significantly decreased after treatment from a median +/- 95% range in the villous region of 28 (19-30) cells/10,000 microm2 before versus 7 (0-10)/10,000 microm2 after treatment, P = 0.01; and from a median +/- 95% range number in the crypt region of 15 (6-23) cells/10,000 microm2 before versus 4 (0-9)/10,000 microm2 after treatment, P = 0.02, implying T cell lysis as a possible mechanism of action. In conclusion, based on this small study, cyA appears to be an effective alternative drug in dogs with IBD that are refractory to immunosuppressive doses of steroids.
Resumo:
Glucocorticoids play an essential role in the regulation of key physiological processes, including immunomodulation, brain function, energy metabolism, electrolyte balance and blood pressure. Exposure to naturally occurring compounds or industrial chemicals that impair glucocorticoid action may contribute to the increasing incidence of cognitive deficits, immune disorders and metabolic diseases. Potentially, "glucocorticoid disruptors" can interfere with various steps of hormone action, e.g. hormone synthesis, binding to plasma proteins, delivery to target cells, pre-receptor regulation of the ratio of active versus inactive hormones, glucocorticoid receptor (GR) function, or export and degradation of glucocorticoids. Several recent studies indicate that such chemicals exist and that some of them can cause multiple toxic effects by interfering with different steps of hormone action. For example, increasing evidence suggests that organotins disturb glucocorticoid action by altering the function of factors that regulate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) pre-receptor enzymes, by direct inhibition of 11beta-HSD2-dependent inactivation of glucocorticoids, and by blocking GR activation. These observations emphasize on the complexity of the toxic effects caused by such compounds and on the need of suitable test systems to assess their effects on each relevant step.
Resumo:
BACKGROUND: Systemic hypertension confers a hypercoagulable state. We hypothesized that resting mean blood pressure (MBP) interacts with stress hormones in predicting coagulation activity at rest and with acute mental stress. METHODS: We measured plasma clotting factor VII activity (FVII:C), FVIII:C, fibrinogen, D-dimer, epinephrine and norepinephrine, and saliva cortisol in 42 otherwise healthy normotensive and hypertensive medication-free men (mean age 43 +/- 14 years) at rest, immediately after stress, and twice during 60 min of recovery from stress. RESULTS: At rest, the MBP-by-epinephrine interaction predicted FVII:C (beta = -0.33, P < 0.04) and D-dimer (beta = 0.26, P < 0.05), and the MBP-by-cortisol interaction predicted D-dimer (beta = 0.43, P = 0.001), all independent of age and body mass index (BMI). Resting norepinephrine predicted fibrinogen (beta = 0.42, P < 0.01) and D-dimer (beta = 0.37, P < 0.03), both independent of MBP. MBP predicted FVIII:C change from rest to immediately post-stress independent of epinephrine (beta = -0.37, P < 0.03) and norepinephrine (beta = -0.38, P < 0.02). Cortisol change predicted FVIII:C change (beta = -0.30, P < 0.05) independent of age, BMI and MBP. Integrated norepinephrine change from rest to recovery (area under the curve, AUC) predicted D-dimer AUC (beta = 0.34, P = 0.04) independent of MBP. The MBP-by-epinephrine AUC interaction predicted FVII:C AUC (beta = 0.28) and fibrinogen AUC (beta = -0.30), and the MBP-by-norepinephrine AUC interaction predicted FVIII:C AUC (beta = -0.28), all with borderline significance (Ps < 0.09) and independent of age and BMI. CONCLUSIONS: MBP significantly altered the association between stress hormones and coagulation activity at rest and, with borderline significance, across the entire stress and recovery interval. Independent of MBP, catecholamines were associated with procoagulant effects and cortisol reactivity dampened the acute procoagulant stress response.
Resumo:
We report on a patient who was chronically treated with steroids. She simultaneously developed pulmonary nocardiosis as well as a soft tissue infection and osteomyelitis by mycobacterium abscessus. Both infections are rare, but more frequently occur in immunocompromised hosts. The patient was healed after 12 month of adequate antibiotic treatment.
Resumo:
OBJECTIVE: To evaluate the effects of a single preoperative dose of steroid on thyroidectomy outcomes. BACKGROUND: Nausea, pain, and voice alteration frequently occur after thyroidectomy. Because steroids effectively reduce nausea and inflammation, a preoperative administration of steroids could improve these thyroidectomy outcomes. METHODS: Seventy-two patients (men = 20, women = 52) undergoing thyroidectomy for benign disease were included in this randomized, controlled, 2 armed (group D: 8 mg dexamethasone, n = 37; group C: 0.9% NaCl, n = 35), double-blinded study (clinical trial number NCT00619086). Anesthesia, surgical procedures, antiemetics, and analgesic treatments were standardized. Nausea (0-3), pain (visual analog scale), antiemetic and analgesic requirements, and digital voice recording were documented before and 4, 8, 16, 24, 36, and 48 hours after surgery. Patients were followed-up 30 days after hospital discharge. RESULTS: Baseline characteristics were similar among the 2 treatment groups. Nausea was pronounced in the first 16 hours postoperatively (scores were <0.3 and 0.8-1.0 for group D and C, respectively (P = 0.005)), and was significantly lower in group D compared with group C during the observation period (P = 0.001). Pain diminished within 48 hours after surgery (visual analog scale 20 and 35 in group D and C, respectively (P = 0.009)). Antiemetic and analgesic requirements were also significantly diminished. Changes in voice mean frequency were less prominent in the dexamethasone group compared with the placebo group (P = 0.015). No steroid-related complications occurred. CONCLUSION: A preoperative single dose of steroid significantly reduced nausea, vomiting, and pain, and improved postoperative voice function within the first 48 hours (most pronounced within 16 hours) after thyroid resection; this strategy should be routinely applied in thyroidectomies.
Resumo:
BACKGROUND: Osteoporosis has been recognized as an important side effect of long-term and of pulsed steroid application after heart transplantation. METHODS: In June 1989 a prospective clinical trial was started to study bone demineralization by quantitative computed tomographic scan. All patients received vitamin D and calcium. In group I (n = 30) synthetic calcitonin (40 Medical Research Council Standard Units subcutaneously per day was administered in 14-day cycles, whereas group II patients (n = 31) received a placebo preparation. Repeat trabecular and cortical quantitative computed tomographic scans of the thoracic (T12) and lumbar spine (L1, L2, L3) were obtained within 48 weeks after heart transplantation. RESULTS: Expressed as the means of T12, L1, L2, and L3, trabecular bone density decreased significantly from 100+/-24 to 79+/-29 mg/mL within 3 weeks after heart transplantation, followed by a further reduction to 67+/-29 mg/mL after 3 months in the calcitonin group. The values for cortical bone density decreased significantly from 229+/-37 to 202+/-40 mg/mL (calcitonin) 3 weeks after heart transplantation. Comparable results were obtained in the placebo group. In both groups bone density remained stable thereafter. Intergroup differences were not of statistical significance. CONCLUSIONS: In heart transplant recipients progressive trabecular bone demineralization is limited to the first 3 postoperative months. Thereafter, bone density remained stable. A positive effect of synthetic calcitonin in addition to prophylactic calcium and vitamin D application could not be proved by repeat quantitative computed tomography.
Resumo:
A comatose 30-month-old, entire male boxer was presented because of an acute history of a cluster of three to four seizures. Neurological examination suggested a diffuse to multifocal intracranial lesion. Magnetic resonance tomography revealed symmetrical multifocal to diffuse changes of the cerebral grey matter and ependymal lining with sediment in the lateral ventricles. Haematological examination revealed leucocytosis with neutrophilia. Cerebrospinal fluid examination revealed high protein concentration and polymorphonuclear pleocytosis. Despite antiepileptic treatment, therapy against increased intracranial pressure and antibiosis, the dog's condition continued to deteriorate and he was euthanased. Pathological examination revealed fibrinosuppurative meningo-ependymitis and necrotising arteritis throughout the brain. In addition, chronic inflammation and arterial stenosis was found in the spinal meninges. No infectious agent was found. A diagnosis of steroid-responsive meningitis arteritis was made. The massive extension into the meninges and ventricular system of the forebrain has not been described previously in dogs with steroid-responsive meningitis arteritis and should be considered in the differential diagnosis when an intracranial suppurative infection is suspected.
Resumo:
Provision of additional floor heating (33 to 34 degrees C) at birth and during the early postnatal hours is favorable for newborn piglets of domestic sows (Sus scrofa). We investigated whether this relatively high temperature influenced sow behavior and physiology around farrowing. One-half of 28 second-parity pregnant sows were randomly chosen to be exposed to floor heating 12 h after onset of nest building and until 48 h after birth of the first piglet (heat treatment), whereas the rest of the sows entered the control group (control treatment) with no floor heating. Hourly blood sampling from 8 h before and until 24 h after the birth of the first piglet was used for investigation of temporal changes in plasma concentrations of oxytocin, cortisol, and ACTH. In addition, occurrence and duration of sow postures were recorded -8 to +48 h relative to the birth of the first piglet. There was a clear temporal development in sow behavior and hormone concentrations (ACTH, cortisol, and oxytocin) across parturition (P < 0.001), independent of treatment. In general, hormone concentrations increased from the start to the end of farrowing. The observed oxytocin increase and peak late in farrowing coincided with the passive phase where sows lie laterally with an overall reduced activity. Floor heating increased the mean concentration of cortisol (P = 0.02; estimated as 29% greater than in controls) and tended to increase the mean concentration of ACTH (P = 0.08; estimated as 17% greater than in controls), but we did not find any treatment effect on mean oxytocin concentrations, the course of parturition, or the behavior of sows. Behavioral thermoregulation may, however, have lost some function for the sows because the floor was fully heated in our study. In addition, exposure to heat decreased the between-sow variation of plasma oxytocin (approximately 31% less relative to control) and ACTH (approximately 46% less relative to control). Whether this decreased variation may be indicative of acute stress or linked to other biological events is unclear. In conclusion, inescapable floor heating (around 33.5 degrees C) may be considered a stressor for sows around farrowing, giving rise to elevated plasma concentrations of cortisol, but without concurrent changes in oxytocin or behavioral activity.
Resumo:
Human steroid biosynthesis depends on a specifically regulated cascade of enzymes including 3β-hydroxysteroid dehydrogenases (HSD3Bs). Type 2 HSD3B catalyzes the conversion of pregnenolone, 17α-hydroxypregnenolone and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone and androstenedione in the human adrenal cortex and the gonads but the exact regulation of this enzyme is unknown. Therefore, specific downregulation of HSD3B2 at adrenarche around age 6-8 years and characteristic upregulation of HSD3B2 in the ovaries of women suffering from the polycystic ovary syndrome remain unexplained prompting us to study the regulation of HSD3B2 in adrenal NCI-H295R cells. Our studies confirm that the HSD3B2 promoter is regulated by transcription factors GATA, Nur77 and SF1/LRH1 in concert and that the NBRE/Nur77 site is crucial for hormonal stimulation with cAMP. In fact, these three transcription factors together were able to transactivate the HSD3B2 promoter in placental JEG3 cells which normally do not express HSD3B2. By contrast, epigenetic mechanisms such as methylation and acetylation seem not involved in controlling HSD3B2 expression. Cyclic AMP was found to exert differential effects on HSD3B2 when comparing short (acute) versus long-term (chronic) stimulation. Short cAMP stimulation inhibited HSD3B2 activity directly possibly due to regulation at co-factor or substrate level or posttranslational modification of the protein. Long cAMP stimulation attenuated HSD3B2 inhibition and increased HSD3B2 expression through transcriptional regulation. Although PKA and MAPK pathways are obvious candidates for possibly transmitting the cAMP signal to HSD3B2, our studies using PKA and MEK1/2 inhibitors revealed no such downstream signaling of cAMP. However, both signaling pathways were clearly regulating HSD3B2 expression.