61 resultados para Stability of airplanes, Longitudinal
Resumo:
N-myc downstream-regulated gene 1 (NRDG1) is a stress-induced protein whose putative function is suppression of tumor metastasis. A recent proteonomic study showed NDRG1 interacts with the molecular chaperone heat shock protein 90 (Hsp90). From their reported association, we investigated if NDRG1 is dependent on Hsp90 for its stability and is therefore a yet unidentified Hsp90 client protein. Here, we demonstrate that endogenous NDRG1 and Hsp90 physically associate in hepatocellular cancer cell lines. However, geldanamycin (GA)-mediated inhibition of Hsp90 did not disrupt their interaction or result in NDRG1 protein destabilization. On the contrary, inhibition of Hsp90 led to a transcriptional increase of NDRG1 protein which was associated with cell growth arrest. We also observed that GA inhibited the phosphorylation of NDRG1 by targeting its regulating kinases, serum- and glucocorticoid-induced kinase 1 (SGK1) and glycogen synthase kinase 3 beta (GSK3beta). We demonstrate that in the presence of GA, GSK3beta protein and activity were decreased thus indicating that Hsp90 is necessary for GSK3beta stability. Taken together, our data demonstrate that NDRG1 is not a classic client protein but interacts with Hsp90 and is still dually regulated by Hsp90 at a transcriptional and post-translational level. Finally, we suggest for the first time GSK3beta as a new client protein of Hsp90.
Resumo:
In this prospective case series study, 20 patients with an implant-borne single crown following early implant placement with simultaneous contour augmentation were followed for 6 years. Clinical, radiologic, and esthetic parameters were assessed. In addition, cone beam computed tomography (CBCT) was used at 6 years to examine the facial bone wall. During the study period, all 20 implants were successfully integrated, and the clinical parameters remained stable over time. Pleasing esthetic outcomes were noted, as assessed by the pink esthetic scores. None of the implants developed mucosal recession of 1 mm or more. The periapical radiographs yielded stable peri-implant bone levels, with a mean DIB of 0.44 mm at 6 years. The CBCT scans showed that all 20 implants had a detectable facial bone wall at 6 years, with a mean thickness of around 1.9 mm. In summary, this prospective case series study demonstrated stable peri-implant hard and soft tissues for all 20 implants, and pleasing esthetic outcomes overall. The follow-up of 6 years confirmed that the risk for mucosal recession is low with early implant placement. In addition, contour augmentation with guided bone regeneration (GBR) was able to establish and maintain a facial bone wall in all 20 patients.
Resumo:
BACKGROUND Early implant placement with simultaneous contour augmentation is documented with short- and medium-term studies. The long-term stability of contour augmentation is uncertain. METHODS In this prospective, cross-sectional study, 41 patients with an implant-borne single crown were examined twice, in 2006 and 2010. Clinical, radiologic, and esthetic parameters were assessed at both examinations. In addition, a cone beam computed tomographic (CBCT) image was obtained during the second examination to assess the dimensions of the facial bone wall. RESULTS All 41 implants demonstrated ankylotic stability without signs of peri-implant infection at both examinations. The clinical parameters remained stable over time. Satisfactory esthetic outcomes were noted, as assessed by the pink and white esthetic score (PES/WES) indices. Overall, the PES scores were slightly higher than the WES scores. None of the implants developed mucosal recession over time, as confirmed by values of the distance between implant shoulder and mucosal margin and cast measurements. The periapical radiographs yielded stable peri-implant bone levels, with a mean distance between implant shoulder and first visible bone-implant contact value of 2.18 mm. The CBCT analysis demonstrated a mean thickness of the facial bone wall ≈2.2 mm. In two implants (4.9%) no facial bone wall was detectable radiographically. CONCLUSIONS This prospective cross-sectional study demonstrates stable peri-implant hard and soft tissues for all 41 implants examined and satisfactory esthetic outcomes overall. The follow-up of 5 to 9 years confirmed again that the risk for mucosal recession is low with early implant placement. In addition, contour augmentation with guided bone regeneration was able to establish and maintain a facial bone wall in 95% of patients.
Resumo:
Lucid dream and nightmare frequencies vary greatly between individuals and to assess these differences reliable instruments are needed. The present study aimed to examine the reliability of eight-point scales for measuring lucid dream and nightmare frequencies. The scales were administered twice (with a four-week interval) to 93 sport students. A re-test reliability for the lucid dream frequency was found r=.89 (p<.001) and for the nightmare frequency r=.75 (p<.001). Both eight-point scales appear to be reliable measures for assessing individual differences in lucid dream and nightmare frequencies.
Resumo:
Biological diversity within species can be an important driver of population and ecosystem functioning. Until now, such within-species diversity effects have been attributed to underlying variation in DNA sequence. However, within-species differences, and thus potentially functional biodiversity, can also be created by epigenetic variation. Here, we show that epigenetic diversity increases the productivity and stability of plant populations. Epigenetically diverse populations of Arabidopsis thaliana produce up to 40% more biomass than epigenetically uniform populations. The positive epigenetic diversity effects are strongest when populations are grown together with competitors and infected with pathogens, and they seem to be partly driven by complementarity among epigenotypes. Our study has two implications: first, we may need to re-evaluate previous within-species diversity studies where some effects could reflect epigenetic diversity; second, we need to incorporate epigenetics into basic ecological research, by quantifying natural epigenetic diversity and testing for its ecological consequences across many different species.
Resumo:
While electromagnetic duality is a symmetry of many supergravity theories, this is not the case for the N = 8 gauged theory. It was recently shown that this rotation leads to a one-parameter family of SO(8) supergravities. It is an open question what the period of this parameter is. This issue is investigated in the SO(4) invariant sectors of the theory. We classify such critical points and find a novel branch of non-supersymmetric and unstable solutions, whose embedding is related via triality to the two known ones. Secondly, we show that the three branches of solutions lead to a π/4 periodicity of the vacuum structure. The general interrelations between triality and periodicity are discussed. Finally, we comment on the connection to other gauge groups as well as the possibility to achieve (non-)perturbative stability around AdS/Mkw/dS transitions.
Resumo:
How stable are individual differences in self-esteem? We examined the time-dependent decay of rank-order stability of self-esteem and tested whether stability asymptotically approaches zero or a nonzero value across long test–retest intervals. Analyses were based on 6 assessments across a 29-year period of a sample of 3,180 individuals aged 14 to 102 years. The results indicated that, as test–retest intervals increased, stability exponentially decayed and asymptotically approached a nonzero value (estimated as .43). The exponential decay function explained a large proportion of variance in observed stability coefficients, provided a better fit than alternative functions, and held across gender and for all age groups from adolescence to old age. Moreover, structural equation modeling of the individual-level data suggested that a perfectly stable trait component underlies stability of self-esteem. The findings suggest that the stability of self-esteem is relatively large, even across very long periods, and that self-esteem is a trait-like characteristic.
Resumo:
Phase stability, elastic behavior, and pressure-induced structural evolution of synthetic boron-mullite Al5BO9 (a = 5.6780(7), b = 15.035(6), and c =7.698(3) Å, space group Cmc21, Z = 4) were investigated up to 25.6(1) GPa by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell (DAC) under hydrostatic conditions. No evidence of phase transition was observed up to 21.7(1) GPa. At 25.6(1) GPa, the refined unit-cell parameters deviated significantly from the compressional trend, and the diffraction peaks appeared broader than at lower pressure. At 26.7(1) GPa, the diffraction pattern was not indexable, suggesting amorphization of the material or a phase transition to a high-pressure polymorph. Fitting the P–V data up to 21.7(1) GPa with a second-order Birch–Murnaghan Equation-of-State, we obtained a bulk modulus KT0 = 164(1) GPa. The axial compressibilities, here described as linearized bulk moduli, are as follows: KT0(a) = 244(9), KT0(b) = 120(4), and KT0(c) = 166(11) GPa (KT0(a):KT0(b):KT0(c) = 2.03:1:1.38). The structure refinements allowed a description of the main deformation mechanisms in response to the applied pressure. The stiffer crystallographic direction appears to be controlled by the infinite chains of edge-sharing octahedra running along [100], making the structure less compressible along the a-axis than along the b- and c-axis.
Resumo:
Ultraviolet-ozone treatment is used as a standard surface cleaning procedure for removal of molecular organic contamination from analytical and sensing devices. Here, it is applied for injection-molded polymer microcantilevers before characterization and sensing experiments. This article examines the effects of the surface cleaning process using commercial equipment, in particular on the performance and mechanical properties of the cantilevers. It can be shown that the first chemical aging process essentially consist of the cross linking of the polymer chains together with a physical aging of the material. For longer exposure, the expected thermo-oxidative formation of carbonyl groups sets in and an exposure dependent chemical degradation can be detected. A process time of 20 min was found suitable as a trade-off between cleaning and stability
Resumo:
Aromatic pi–pi stacking interactions are ubiquitous in nature, medicinal chemistry and materials sciences. They play a crucial role in the stacking of nucleobases, thus stabilising the DNA double helix. The following paper describes a series of chimeric DNA–polycyclic aromatic hydrocarbon (PAH) hybrids. The PAH building blocks are electron-rich pyrene and electron-poor perylenediimide (PDI), and were incorporated into complementary DNA strands. The hybrids contain different numbers of pyrene–PDI interactions that were found to directly influence duplex stability. As the pyrene–PDI ratio approaches 1:1, the stability of the duplexes increases with an average value of 7.5 °C per pyrene–PDI supramolecular interaction indicating the importance of electrostatic complementarity for aromatic pi–pi stacking interactions.
Resumo:
We investigate the stability of super-Earth atmospheres around M stars using a seven-parameter, analytical framework. We construct stability diagrams in the parameter space of exoplanetary radius versus semimajor axis and elucidate the regions in which the atmospheres are stable against the condensation of their major constituents, out of the gas phase, on their permanent nightside hemispheres. We find that super-Earth atmospheres that are nitrogen-dominated (Earth-like) occupy a smaller region of allowed parameter space, compared to hydrogen-dominated atmospheres, because of the dual effects of diminished advection and enhanced radiative cooling. Furthermore, some super-Earths which reside within the habitable zones of M stars may not possess stable atmospheres, depending on the mean molecular weight and infrared photospheric pressure of their atmospheres. We apply our stability diagrams to GJ 436b and GJ 1214b, and demonstrate that atmospheric compositions with high mean molecular weights are disfavored if these exoplanets possess solid surfaces and shallow atmospheres. Finally, we construct stability diagrams tailored to the Kepler data set, for G and K stars, and predict that about half of the exoplanet candidates are expected to harbor stable atmospheres if Earth-like conditions are assumed. We include 55 Cancri e and CoRoT-7b in our stability diagram for G stars
Resumo:
BACKGROUND Medial open wedge high tibial osteotomy is a well-established procedure for the treatment of unicompartmental osteoarthritis and symptomatic varus malalignment. We hypothesized that different fixation devices generate different fixation stability profiles for the various wedge sizes in a finite element (FE) analysis. METHODS Four types of fixation were compared: 1) first and 2) second generation Puddu plates, and 3) TomoFix plate with and 4) without bone graft. Cortical and cancellous bone was modelled and five different opening wedge sizes were studied for each model. Outcome measures included: 1) stresses in bone, 2) relative displacement of the proximal and distal tibial fragments, 3) stresses in the plates, 4) stresses on the upper and lower screw surfaces in the screw channels. RESULTS The highest load for all fixation types occurred in the plate axis. For the vast majority of the wedge sizes and fixation types the shear stress (von Mises stress) was dominating in the bone independent of fixation type. The relative displacements of the tibial fragments were low (in μm range). With an increasing wedge size this displacement tended to increase for both Puddu plates and the TomoFix plate with bone graft. For the TomoFix plate without bone graft a rather opposite trend was observed.For all fixation types the occurring stresses at the screw-bone contact areas pulled at the screws and exceeded the allowable threshold of 1.2 MPa for at least one screw surface. Of the six screw surfaces that were studied, the TomoFix plate with bone graft showed a stress excess of one out of twelve and without bone graft, five out of twelve. With the Puddu plates, an excess stress occurred in the majority of screw surfaces. CONCLUSIONS The different fixation devices generate different fixation stability profiles for different opening wedge sizes. Based on the computational simulations, none of the studied osteosynthesis fixation types warranted an intransigent full weight bearing per se. The highest fixation stability was observed for the TomoFix plates and the lowest for the first generation Puddu plate. These findings were revealed in theoretical models and need to be validated in controlled clinical settings.
Resumo:
BACKGROUND Contour augmentation around early-placed implants (Type 2 placement) using autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) and a collagen barrier membrane has been documented to predictably provide esthetically satisfactory clinical outcomes. In addition, recent data from cone beam computed tomography studies have shown the augmented volume to be stable long-term. However, no human histologic data are available to document the tissue reactions to this bone augmentation procedure. METHODS Over an 8-year period, 12 biopsies were harvested 14 to 80 months after implant placement with simultaneous contour augmentation in 10 patients. The biopsies were subjected to histologic and histomorphometric analysis. RESULTS The biopsies consisted of 32.0% ± 9.6% DBBM particles and 40.6% ± 14.6% mature bone. 70.3% ± 14.5% of the DBBM particle surfaces were covered with bone. On the remaining surface, multinucleated giant cells with varying intensity of tartrate-resistant acid phosphatase staining were regularly present. No signs of inflammation were visible, and no tendency toward a decreasing volume fraction of DBBM over time was observed. CONCLUSIONS The present study confirms previous findings that osseointegrated DBBM particles do not tend to undergo substitution over time. This low substitution rate may be the reason behind the clinically and radiographically documented long-term stability of contour augmentation using a combination of autogenous bone chips, DBBM particles, and a collagen membrane.