66 resultados para Spiral colon
Resumo:
The effect of the opioid antagonists naloxone-3-glucuronide and N-methylnaloxone on rat colon motility after morphine stimulation was measured. The rat model consisted of the isolated, vascularly perfused colon. The antagonists (10(-4) M, intraluminally) and morphine (10(-4) M, intra-arterially) were administered from 20 to 30 and from 10 to 50 min, respectively. Colon motility was determined by the luminal outflow. The antagonist concentrations in the luminal and venous outflow were measured by high-performance liquid chromatography. Naloxone-3-glucuronide and N-methylnaloxone reversed the morphine-induced reduction of the luminal outflow to baseline within 10 and 20 min, respectively. These antagonists were then excreted in the luminal outflow and could not be found in the venous samples. Naloxone, produced by hydrolysis or demethylation, was not detectable. In conclusion, highly polar naloxone derivatives peripherally antagonize the motility-lowering effect of morphine in the perfused isolated rat colon, are stable, and are not able to cross the colon-mucosal blood barrier.
Resumo:
BACKGROUND: Stem cells with the ability to form clonal floating colonies (spheres) were recently isolated from the neonatal murine spiral ganglion. To further examine the features of inner ear-derived neural stem cells and their derivatives, we investigated the effects of leukemia inhibitory factor (LIF), a neurokine that has been shown to promote self-renewal of other neural stem cells and to affect neural and glial cell differentiation. RESULTS: LIF-treatment led to a dose-dependent increase of the number of neurons and glial cells in cultures of sphere-derived cells. Based on the detection of developmental and progenitor cell markers that are maintained in LIF-treated cultures and the increase of cycling nestin-positive progenitors, we propose that LIF maintains a pool of neural progenitor cells. We further provide evidence that LIF increases the number of nestin-positive progenitor cells directly in a cell cycle-independent fashion, which we interpret as an acceleration of neurogenesis in sphere-derived progenitors. This effect is further enhanced by an anti-apoptotic action of LIF. Finally, LIF and the neurotrophins BDNF and NT3 additively promote survival of stem cell-derived neurons. CONCLUSION: Our results implicate LIF as a powerful tool to control neural differentiation and maintenance of stem cell-derived murine spiral ganglion neuron precursors. This finding could be relevant in cell replacement studies with animal models featuring spiral ganglion neuron degeneration. The additive effect of the combination of LIF and BDNF/NT3 on stem cell-derived neuronal survival is similar to their effect on primary spiral ganglion neurons, which puts forward spiral ganglion-derived neurospheres as an in vitro model system to study aspects of auditory neuron development.
Resumo:
Objective. The purpose of this study was to determine the dose profile of the Cranex Tome radiography unit and compare it with that of the Scanora machine.Study design. The radiation dose delivered by the Cranex Tome radiography unit during the cross-sectional mode was determined. Single tooth gaps in regions 3 (16) and 30 (46) were simulated. Dosimetry was carried out with 2 phantoms, a head and neck phantom and a full-body phantom loaded with 142 thermoluminescent dosimeters (TLD) and 280 TLD, respectively; all locations corresponded to radiosensitive organs or tissues. The recorded local mean organ doses were compared with those measured in another study evaluating the Scanora machine.Results. Generally, dose values from the Cranex Tome radiography unit reached only 50% to 60% of the values measured for the Scanora machine. The effective dose was calculated as 0.061 mSv and 0.04 mSv for tooth regions 3 (16) and 30 (46), respectively. Corresponding values for the Scanora machine were 0.117 mSv and 0.084 mSv.Conclusion. Cross-sectional imaging in the molar region of the upper and the lower jaw can be performed with the Cranex Tome unit, which delivers only approximately half of the dose that the Scanora machine delivers.
Resumo:
Radiation dose delivered from the SCANORA radiography unit during the cross-sectional mode for dentotangential projections was determined. With regard to oral implantology, patient situations of an edentulous maxilla and mandible as well as a single tooth gap in regions 16 and 46 were simulated. Radiation doses were measured between 0.2 and 22.5 mGy to organs and tissues in the head and neck region when the complete maxilla or mandible was examined. When examining a single tooth gap, only 8% to 40% of that radiation dose was generally observed. Based on these results, the mortality risk was estimated according to a calculation model recommended by the Committee on the Biological Effects of Ionizing Radiations. The mortality risk ranged from 31.4 x 10(-6) for 20-year-old men to 4.8 x 10(-6) for 65-year-old women when cross-sectional imaging of the complete maxilla was performed. The values decreased by 70% when a single tooth gap in the molar region of the maxilla was radiographed. The figures for the mortality risk for examinations of the complete mandible were similar to those for the complete maxilla, but the mortality risk decreased by 80% if only a single tooth gap in the molar region of the mandible was examined. Calculations according to the International Commission on Radiological Protection carried out for comparison did not reveal the decrease of the mortality risk with age and resulted in a higher risk value in comparison to the group of 35-year old individuals in calculations according to the Committee on the Biological Effects of Ionizing Radiations.
Resumo:
In the present study, dose measurements have been conducted following examination of the maxilla and mandible with spiral computed tomography (CT). The measurements were carried out with 2 phantoms, a head and neck phantom and a full body phantom. The analysis of applied thermoluminescent dosimeters yielded radiation doses for organs and tissues in the head and neck region between 0.6 and 16.7 mGy when 40 axial slices and 120 kV/165 mAs were used as exposure parameters. The effective dose was calculated as 0.58 and 0.48 mSv in the maxilla and mandible, respectively. Tested methods for dose reduction showed a significant decrease of radiation dose from 40 to 65%. Based on these results, the mortality risk was estimated according to calculation models recommended by the Committee on the Biological Effects of Ionizing Radiations and by the International Commission on Radiological Protection. Both models resulted in similar values. The mortality risk ranges from 46.2 x 10.6 for 20-year-old men to 11.2 x 10(-6) for 65-year-old women. Using 2 methods of dose reduction, the mortality risk decreased by approximately 50 to 60% to 19.1 x 10(-6) for 20-year-old men and 5.5 x 10(-6) for 65-year-old women. It can be concluded that a CT scan of the maxillofacial complex causes a considerable radiation dose when compared with conventional radiographic examinations. Therefore, a careful indication for this imaging technique and dose reduction methods should be considered in daily practice.
Resumo:
BACKGROUND: Low tissue oxygen tension is an important factor leading to the development of wound dehiscence and anastomotic leakage after colon surgery. We tested whether supplemental fluid and supplemental oxygen can increase tissue oxygen tension in healthy and injured, perianastomotic, and anastomotic colon in an acutely instrumented pig model of anastomosis surgery. METHODS: Sixteen Swiss Landrace pigs were anesthetized (isoflurane 0.8%-1%) and their lungs ventilated. The animals were randomly assigned to low fluid treatment ("low" group, 3 mL x kg(-1) x h(-1) lactated Ringer's solution) or high fluid treatment ("high" group, 10 mL/kg bolus, 18 mL x kg(-1) x h(-1) lactated Ringer's solution) during colon anastomosis surgery and a subsequent measurement period (4 h). Two-and-half hours after surgery, tissue oxygen tension was recorded for 30 min during ventilation with 30% oxygen. Three hours after surgery, the animals' lungs were ventilated with 100% oxygen for 60 min. Tissue oxygen tension was recorded in the last 30 min. Tissue oxygen tension was measured with polarographic Clark-type electrodes, positioned in healthy colonic wall, close (2 cm) to the anastomosis, and in the anastomosis. RESULTS: In every group, tissue oxygen tension during ventilation with 100% oxygen was approximately twice as high as during ventilation with 30% oxygen, a statistically significant result. High or low volume crystalloid fluid treatment had no effect on colon tissue oxygen tension. CONCLUSIONS: Supplemental oxygen, but not supplemental crystalloid fluid, increased tissue oxygen tension in healthy, perianastomotic, and anastomotic colon tissue.
Resumo:
BACKGROUND AND OBJECTIVE: Insufficient blood flow and oxygenation in the intestinal tract is associated with increased incidence of postoperative complications after bowel surgery. High fluid volume administration may prevent occult regional hypoperfusion and intestinal tissue hypoxia. We tested the hypothesis that high intraoperative fluid volume administration increases intestinal wall tissue oxygen pressure during laparotomy. METHODS: In all, 27 pigs were anaesthetized, ventilated and randomly assigned to one of the three treatment groups (n = 9 in each) receiving low (3 mL kg-1 h-1), medium (7 mL kg-1 h-1) or high (20 mL kg-1 h-1) fluid volume treatment with lactated Ringer's solution. All animals received 30% and 100% inspired oxygen in random order. Cardiac index was measured with thermodilution and tissue oxygen pressure with a micro-oximetry system in the jejunum and colon wall and subcutaneous tissue. RESULTS: Groups receiving low and medium fluid volume treatment had similar systemic haemodynamics. The high fluid volume group had significantly higher mean arterial pressure, cardiac index and subcutaneous tissue oxygenation. Tissue oxygen pressures in the jejunum and colon were comparable in all three groups. CONCLUSIONS: The three different fluid volume regimens tested did not affect tissue oxygen pressure in the jejunum and colon, suggesting efficient autoregulation of intestinal blood flow in healthy subjects undergoing uncomplicated abdominal surgery.
Resumo:
Thiazolides are a novel class of broad-spectrum anti-infective drugs with promising in vitro and in vivo activities against intracellular and extracellular protozoan parasites. The nitrothiazole-analogue nitazoxanide (NTZ; 2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide) represents the thiazolide parent compound, and a number of bromo- and carboxy-derivatives with differing activities have been synthesized. Here we report that NTZ and the bromo-thiazolide RM4819, but not the carboxy-thiazolide RM4825, inhibited proliferation of the colon cancer cell line Caco2 and nontransformed human foreskin fibroblasts (HFF) at or below concentrations the compounds normally exhibit anti-parasitic activity. Thiazolides induced typical signs of apoptosis, such as nuclear condensation, DNA fragmentation and phosphatidylserine exposure. Interestingly, the apoptosis-inducing effect of thiazolides appeared to be cell cycle-dependent and induction of cell cycle arrest substantially inhibited the cell death-inducing activity of these compounds. Using affinity chromatography and mass spectrometry glutathione-S-transferase P1 (GSTP1) from the GST class Pi was identified as a major thiazolide-binding protein. GSTP1 expression was more than 10 times higher in the thiazolide-sensitive Caco2 cells than in the less sensitive HFF cells. The enzymatic activity of recombinant GSTP1 was strongly inhibited by thiazolides. Silencing of GSTP1 using siRNA rendered cells insensitive to RM4819, while overexpression of GSTP1 increased sensitivity to RM4819-induced cell death. Thiazolides may thus represent an interesting novel class of future cancer therapeutics.
Resumo:
BACKGROUND: The aim of this study was to compare the effects of goal-directed colloid fluid therapy with goal-directed crystalloid and restricted crystalloid fluid therapy on healthy and perianastomotic colon tissue in a pig model of colon anastomosis surgery. METHODS: Pigs (n = 27, 9 per group) were anesthetized and mechanically ventilated. A hand-sewn colon anastomosis was performed. The animals were subsequently randomized to one of the following treatments: R-RL group, 3 ml x kg(-1) x h(-1) Ringer lactate (RL); GD-RL group, 3 ml x kg(-1) x h(-1) RL + bolus 250 ml of RL; GD-C group, 3 ml x kg(-1) x h(-1) RL + bolus 250 ml of hydroxyethyl starch (HES 6%, 130/0.4). A fluid bolus was administered when mixed venous oxygen saturation dropped below 60%. Intestinal tissue oxygen tension and microcirculatory blood flow were measured continuously. RESULTS: After 4 h of treatment, tissue oxygen tension in healthy colon increased to 150 +/- 31% in group GD-C versus 123 +/- 40% in group GD-RL versus 94 +/- 23% in group R-RL (percent of postoperative baseline values, mean +/- SD; P < 0.01). Similarly perianastomotic tissue oxygen tension increased to 245 +/- 93% in the GD-C group versus 147 +/- 58% in the GD-RL group and 116 +/- 22% in the R-RL group (P < 0.01). Microcirculatory flow was higher in group GD-C in healthy colon. CONCLUSIONS: Goal-directed colloid fluid therapy significantly increased microcirculatory blood flow and tissue oxygen tension in healthy and injured colon compared to goal-directed or restricted crystalloid fluid therapy.