34 resultados para Spatially Explicit Simulations
Resumo:
BACKGROUND: The sensory drive hypothesis predicts that divergent sensory adaptation in different habitats may lead to premating isolation upon secondary contact of populations. Speciation by sensory drive has traditionally been treated as a special case of speciation as a byproduct of adaptation to divergent environments in geographically isolated populations. However, if habitats are heterogeneous, local adaptation in the sensory systems may cause the emergence of reproductively isolated species from a single unstructured population. In polychromatic fishes, visual sensitivity might become adapted to local ambient light regimes and the sensitivity might influence female preferences for male nuptial color. In this paper, we investigate the possibility of speciation by sensory drive as a byproduct of divergent visual adaptation within a single initially unstructured population. We use models based on explicit genetic mechanisms for color vision and nuptial coloration. RESULTS: We show that in simulations in which the adaptive evolution of visual pigments and color perception are explicitly modeled, sensory drive can promote speciation along a short selection gradient within a continuous habitat and population. We assumed that color perception evolves to adapt to the modal light environment that individuals experience and that females prefer to mate with males whose nuptial color they are most sensitive to. In our simulations color perception depends on the absorption spectra of an individual's visual pigments. Speciation occurred most frequently when the steepness of the environmental light gradient was intermediate and dispersal distance of offspring was relatively small. In addition, our results predict that mutations that cause large shifts in the wavelength of peak absorption promote speciation, whereas we did not observe speciation when peak absorption evolved by stepwise mutations with small effect. CONCLUSION: The results suggest that speciation can occur where environmental gradients create divergent selection on sensory modalities that are used in mate choice. Evidence for such gradients exists from several animal groups, and from freshwater and marine fishes in particular. The probability of speciation in a continuous population under such conditions may then critically depend on the genetic architecture of perceptual adaptation and female mate choice.
Resumo:
Temperature changes in Antarctica over the last millennium are investigated using proxy records, a set of simulations driven by natural and anthropogenic forcings and one simulation with data assimilation. Over Antarctica, a long term cooling trend in annual mean is simulated during the period 1000–1850. The main contributor to this cooling trend is the volcanic forcing, astronomical forcing playing a dominant role at seasonal timescale. Since 1850, all the models produce an Antarctic warming in response to the increase in greenhouse gas concentrations. We present a composite of Antarctic temperature, calculated by averaging seven temperature records derived from isotope measurements in ice cores. This simple approach is supported by the coherency displayed between model results at these data grid points and Antarctic mean temperature. The composite shows a weak multi-centennial cooling trend during the pre-industrial period and a warming after 1850 that is broadly consistent with model results. In both data and simulations, large regional variations are superimposed on this common signal, at decadal to centennial timescales. The model results appear spatially more consistent than ice core records. We conclude that more records are needed to resolve the complex spatial distribution of Antarctic temperature variations during the last millennium.