33 resultados para Software Package Data Exchange (SPDX)
Resumo:
Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.
Resumo:
Quality data are not only relevant for successful Data Warehousing or Business Intelligence applications; they are also a precondition for efficient and effective use of Enterprise Resource Planning (ERP) systems. ERP professionals in all kinds of businesses are concerned with data quality issues, as a survey, conducted by the Institute of Information Systems at the University of Bern, has shown. This paper demonstrates, by using results of this survey, why data quality problems in modern ERP systems can occur and suggests how ERP researchers and practitioners can handle issues around the quality of data in an ERP software Environment.
Resumo:
mgof computes goodness-of-fit tests for the distribution of a discrete (categorical, multinomial) variable. The default is to perform classical large sample chi-squared approximation tests based on Pearson's X2 statistic and the log likelihood ratio (G2) statistic or a statistic from the Cressie-Read family. Alternatively, mgof computes exact tests using Monte Carlo methods or exhaustive enumeration. A Kolmogorov-Smirnov test for discrete data is also provided. The moremata package, also available from SSC, is required.