38 resultados para Sign Data LMS algorithm.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). In this context both the correct associations among the observations, and the orbits of the objects have to be determined. The complexity of the MTT problem is defined by its dimension S. Where S stands for the number of ’fences’ used in the problem, each fence consists of a set of observations that all originate from dierent targets. For a dimension of S ˃ the MTT problem becomes NP-hard. As of now no algorithm exists that can solve an NP-hard problem in an optimal manner within a reasonable (polynomial) computation time. However, there are algorithms that can approximate the solution with a realistic computational e ort. To this end an Elitist Genetic Algorithm is implemented to approximately solve the S ˃ MTT problem in an e cient manner. Its complexity is studied and it is found that an approximate solution can be obtained in a polynomial time. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to e ciently process large data sets with minimal manual intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm, AMARA) is based on combining two methods: the “movement artifact reduction algorithm (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Behavior is one of the most important indicators for assessing cattle health and well-being. The objective of this study was to develop and validate a novel algorithm to monitor locomotor behavior of loose-housed dairy cows based on the output of the RumiWatch pedometer (ITIN+HOCH GmbH, Fütterungstechnik, Liestal, Switzerland). Data of locomotion were acquired by simultaneous pedometer measurements at a sampling rate of 10 Hz and video recordings for manual observation later. The study consisted of 3 independent experiments. Experiment 1 was carried out to develop and validate the algorithm for lying behavior, experiment 2 for walking and standing behavior, and experiment 3 for stride duration and stride length. The final version was validated, using the raw data, collected from cows not included in the development of the algorithm. Spearman correlation coefficients were calculated between accelerometer variables and respective data derived from the video recordings (gold standard). Dichotomous data were expressed as the proportion of correctly detected events, and the overall difference for continuous data was expressed as the relative measurement error. The proportions for correctly detected events or bouts were 1 for stand ups, lie downs, standing bouts, and lying bouts and 0.99 for walking bouts. The relative measurement error and Spearman correlation coefficient for lying time were 0.09% and 1; for standing time, 4.7% and 0.96; for walking time, 17.12% and 0.96; for number of strides, 6.23% and 0.98; for stride duration, 6.65% and 0.75; and for stride length, 11.92% and 0.81, respectively. The strong to very high correlations of the variables between visual observation and converted pedometer data indicate that the novel RumiWatch algorithm may markedly improve automated livestock management systems for efficient health monitoring of dairy cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When considering data from many trials, it is likely that some of them present a markedly different intervention effect or exert an undue influence on the summary results. We develop a forward search algorithm for identifying outlying and influential studies in meta-analysis models. The forward search algorithm starts by fitting the hypothesized model to a small subset of likely outlier-free studies and proceeds by adding studies into the set one-by-one that are determined to be closest to the fitted model of the existing set. As each study is added to the set, plots of estimated parameters and measures of fit are monitored to identify outliers by sharp changes in the forward plots. We apply the proposed outlier detection method to two real data sets; a meta-analysis of 26 studies that examines the effect of writing-to-learn interventions on academic achievement adjusting for three possible effect modifiers, and a meta-analysis of 70 studies that compares a fluoride toothpaste treatment to placebo for preventing dental caries in children. A simple simulated example is used to illustrate the steps of the proposed methodology, and a small-scale simulation study is conducted to evaluate the performance of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposed an automated three-dimensional (3D) lumbar intervertebral disc (IVD) segmentation strategy from Magnetic Resonance Imaging (MRI) data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based template matching approach. Based on the estimated two-dimensional (2D) geometrical parameters, a 3D variable-radius soft tube model of the lumbar spine column is built by model fitting to the 3D data volume. Taking the geometrical information from the 3D lumbar spine column as constraints and segmentation initialization, the disc segmentation is achieved by a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Syndromic surveillance (SyS) systems currently exploit various sources of health-related data, most of which are collected for purposes other than surveillance (e.g. economic). Several European SyS systems use data collected during meat inspection for syndromic surveillance of animal health, as some diseases may be more easily detected post-mortem than at their point of origin or during the ante-mortem inspection upon arrival at the slaughterhouse. In this paper we use simulation to evaluate the performance of a quasi-Poisson regression (also known as an improved Farrington) algorithm for the detection of disease outbreaks during post-mortem inspection of slaughtered animals. When parameterizing the algorithm based on the retrospective analyses of 6 years of historic data, the probability of detection was satisfactory for large (range 83-445 cases) outbreaks but poor for small (range 20-177 cases) outbreaks. Varying the amount of historical data used to fit the algorithm can help increasing the probability of detection for small outbreaks. However, while the use of a 0·975 quantile generated a low false-positive rate, in most cases, more than 50% of outbreak cases had already occurred at the time of detection. High variance observed in the whole carcass condemnations time-series, and lack of flexibility in terms of the temporal distribution of simulated outbreaks resulting from low reporting frequency (monthly), constitute major challenges for early detection of outbreaks in the livestock population based on meat inspection data. Reporting frequency should be increased in the future to improve timeliness of the SyS system while increased sensitivity may be achieved by integrating meat inspection data into a multivariate system simultaneously evaluating multiple sources of data on livestock health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many attempts have already been made to detect exomoons around transiting exoplanets, but the first confirmed discovery is still pending. The experiences that have been gathered so far allow us to better optimize future space telescopes for this challenge already during the development phase. In this paper we focus on the forthcoming CHaraterising ExOPlanet Satellite (CHEOPS), describing an optimized decision algorithm with step-by-step evaluation, and calculating the number of required transits for an exomoon detection for various planet moon configurations that can be observable by CHEOPS. We explore the most efficient way for such an observation to minimize the cost in observing time. Our study is based on PTV observations (photocentric transit timing variation) in simulated CHEOPS data, but the recipe does not depend on the actual detection method, and it can be substituted with, e.g., the photodynamical method for later applications. Using the current state-of-the-art level simulation of CHEOPS data we analyzed transit observation sets for different star planet moon configurations and performed a bootstrap analysis to determine their detection statistics. We have found that the detection limit is around an Earth-sized moon. In the case of favorable spatial configurations, systems with at least a large moon and a Neptune-sized planet, an 80% detection chance requires at least 5-6 transit observations on average. There is also a nonzero chance in the case of smaller moons, but the detection statistics deteriorate rapidly, while the necessary transit measurements increase quickly. After the CoRoT and Kepler spacecrafts, CHEOPS will be the next dedicated space telescope that will observe exoplanetary transits and characterize systems with known Doppler-planets. Although it has a smaller aperture than Kepler (the ratio of the mirror diameters is about 1/3) and is mounted with a CCD that is similar to Kepler's, it will observe brighter stars and operate with larger sampling rate; therefore, the detection limit for an exomoon can be the same as or better, which will make CHEOPS a competitive instruments in the quest for exomoons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN Subgroup analysis of the lumbar spinal stenosis (LSS) without degenerative spondylolisthesis diagnostic cohort of the Spine Patient Outcomes Research Trial multicenter randomized clinical trial with a concurrent observational cohort. OBJECTIVE To determine if sedimentation sign on magnetic resonance image can help with LSS treatment decisions. SUMMARY OF BACKGROUND DATA LSS is one of the most common reasons for surgery in the US elderly, but there is a dearth of reliable diagnostic tools that give a clear indication for surgery. Recent studies have suggested that positive sedimentation sign on magnetic resonance image may be a possible prognostic indicator. METHODS All patients with LSS in both the randomized and observational cohorts had imaging-confirmed stenosis, were surgical candidates, and had neurogenic claudication for at least 12 weeks prior to enrollment. Patients were categorized as "mild," "moderate," or "severe" according to stenosis severity. Of the 654 patients with LSS enrolled in Spine Patient Outcomes Research Trial, complete T2-weighted axial and sagittal digitized images of 115 patients were available for retrospective review. An independent orthopedic spine surgeon evaluated these deidentified Digital Imaging and Communications in Medicine files for the sedimentation sign. RESULTS Sixty-six percent (76/115) of patients were found to have a positive sedimentation sign. Those with a positive sedimentation sign were more likely to have stenosis at L2-L3 (33% vs. 10% P=0.016) or L3-L4 76% vs. 51%, P=0.012), and to have severe (72% vs. 33%, P<0.0001) central stenosis (93% vs. 67% P<0.001) at 2 or more concurrent levels (57% vs. 18%, P=0.01). In multivariate models, the surgical treatment effect was significantly larger in the positive sedimentation sign group for Oswestry Disability Index (-16 vs. -7; P=0.02). CONCLUSION A positive sedimentation sign was associated with a small but significantly greater surgical treatment effect for Oswestry Disability Index in patients with symptomatic LSS, after adjusting for other demographic and imaging features. These findings suggest that positive sedimentation sign may potentially be a useful adjunct to help guide an informed treatment choice regarding surgery for LSS. LEVEL OF EVIDENCE 2.