52 resultados para SYNAPTIC CONNECTIVITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropathic pain caused by peripheral nerve injury is a debilitating neurological condition of high clinical relevance. On the cellular level, the elevated pain sensitivity is induced by plasticity of neuronal function along the pain pathway. Changes in cortical areas involved in pain processing contribute to the development of neuropathic pain. Yet, it remains elusive which plasticity mechanisms occur in cortical circuits. We investigated the properties of neural networks in the anterior cingulate cortex (ACC), a brain region mediating affective responses to noxious stimuli. We performed multiple whole-cell recordings from neurons in layer 5 (L5) of the ACC of adult mice after chronic constriction injury of the sciatic nerve of the left hindpaw and observed a striking loss of connections between excitatory and inhibitory neurons in both directions. In contrast, no significant changes in synaptic efficacy in the remaining connected pairs were found. These changes were reflected on the network level by a decrease in the mEPSC and mIPSC frequency. Additionally, nerve injury resulted in a potentiation of the intrinsic excitability of pyramidal neurons, whereas the cellular properties of interneurons were unchanged. Our set of experimental parameters allowed constructing a neuronal network model of L5 in the ACC, revealing that the modification of inhibitory connectivity had the most profound effect on increased network activity. Thus, our combined experimental and modeling approach suggests that cortical disinhibition is a fundamental pathological modification associated with peripheral nerve damage. These changes at the cortical network level might therefore contribute to the neuropathic pain condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients suffering from bipolar affective disorder show deficits in working memory functions. In a previous functional magnetic resonance imaging study, we observed an abnormal hyperactivity of the amygdala in bipolar patients during articulatory rehearsal in verbal working memory. In the present study, we investigated the dynamic neurofunctional interactions between the right amygdala and the brain systems that underlie verbal working memory in both bipolar patients and healthy controls. In total, 18 euthymic bipolar patients and 18 healthy controls performed a modified version of the Sternberg item-recognition (working memory) task. We used the psychophysiological interaction approach in order to assess functional connectivity between the right amygdala and the brain regions involved in verbal working memory. In healthy subjects, we found significant negative functional interactions between the right amygdala and multiple cortical brain areas involved in verbal working memory. In comparison with the healthy control subjects, bipolar patients exhibited significantly reduced functional interactions of the right amygdala particularly with the right-hemispheric, i.e., ipsilateral, cortical regions supporting verbal working memory. Together with our previous finding of amygdala hyperactivity in bipolar patients during verbal rehearsal, the present results suggest that a disturbed right-hemispheric “cognitive–emotional” interaction between the amygdala and cortical brain regions underlying working memory may be responsible for amygdala hyperactivation and affects verbal working memory (deficits) in bipolar patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resting-state functional connectivity (FC) fMRI (rs-fcMRI) offers an appealing approach to mapping the brain's intrinsic functional organization. Blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) are the two main rs-fcMRI approaches to assess alterations in brain networks associated with individual differences, behavior and psychopathology. While the BOLD signal is stronger with a higher temporal resolution, ASL provides quantitative, direct measures of the physiology and metabolism of specific networks. This study systematically investigated the similarity and reliability of resting brain networks (RBNs) in BOLD and ASL. A 2×2×2 factorial design was employed where each subject underwent repeated BOLD and ASL rs-fcMRI scans on two occasions on two MRI scanners respectively. Both independent and joint FC analyses revealed common RBNs in ASL and BOLD rs-fcMRI with a moderate to high level of spatial overlap, verified by Dice Similarity Coefficients. Test-retest analyses indicated more reliable spatial network patterns in BOLD (average modal Intraclass Correlation Coefficients: 0.905±0.033 between-sessions; 0.885±0.052 between-scanners) than ASL (0.545±0.048; 0.575±0.059). Nevertheless, ASL provided highly reproducible (0.955±0.021; 0.970±0.011) network-specific CBF measurements. Moreover, we observed positive correlations between regional CBF and FC in core areas of all RBNs indicating a relationship between network connectivity and its baseline metabolism. Taken together, the combination of ASL and BOLD rs-fcMRI provides a powerful tool for characterizing the spatiotemporal and quantitative properties of RBNs. These findings pave the way for future BOLD and ASL rs-fcMRI studies in clinical populations that are carried out across time and scanners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE There is increasing evidence that epileptic activity involves widespread brain networks rather than single sources and that these networks contribute to interictal brain dysfunction. We investigated the fast-varying behavior of epileptic networks during interictal spikes in right and left temporal lobe epilepsy (RTLE and LTLE) at a whole-brain scale using directed connectivity. METHODS In 16 patients, 8 with LTLE and 8 with RTLE, we estimated the electrical source activity in 82 cortical regions of interest (ROIs) using high-density electroencephalography (EEG), individual head models, and a distributed linear inverse solution. A multivariate, time-varying, and frequency-resolved Granger-causal modeling (weighted Partial Directed Coherence) was applied to the source signal of all ROIs. A nonparametric statistical test assessed differences between spike and baseline epochs. Connectivity results between RTLE and LTLE were compared between RTLE and LTLE and with neuropsychological impairments. RESULTS Ipsilateral anterior temporal structures were identified as key drivers for both groups, concordant with the epileptogenic zone estimated invasively. We observed an increase in outflow from the key driver already before the spike. There were also important temporal and extratemporal ipsilateral drivers in both conditions, and contralateral only in RTLE. A different network pattern between LTLE and RTLE was found: in RTLE there was a much more prominent ipsilateral to contralateral pattern than in LTLE. Half of the RTLE patients but none of the LTLE patients had neuropsychological deficits consistent with contralateral temporal lobe dysfunction, suggesting a relationship between connectivity changes and cognitive deficits. SIGNIFICANCE The different patterns of time-varying connectivity in LTLE and RTLE suggest that they are not symmetrical entities, in line with our neuropsychological results. The highest outflow region was concordant with invasive validation of the epileptogenic zone. This enhanced characterization of dynamic connectivity patterns could better explain cognitive deficits and help the management of epilepsy surgery candidates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical injury of the CNS frequently results from accidents but also occurs in the course of neurosurgical interventions. A great variety of anatomical and physiological changes have been described to evolve after a brain trauma yet only little is known about processes that occur during a trauma. In the present study, I obtained whole-cell patch clamp recordings from pyramidal cells in hippocampal slice cultures while mechanically lesioning the CA3 area. Electrophysiological analysis revealed that traumatic injury massively increased excitatory and inhibitory synaptic activity in the entire CA3 region. Cutting the CA3 region induced highly rhythmic excitatory postsynaptic currents (EPSCs) that reached frequencies of around 70 Hz. Blocking voltage-dependent sodium channels with tetrodotoxin prevented the increase in synaptic activity and injury-induced neurotransmitter release in CA3 remote from the lesion site. With fast synaptic transmission blocked only neurons in the immediate vicinity of a lesion depolarized and fired action potentials upon mechanical damage. I hence suggest that mechanical injury damages the membrane and induces action potential firing in only a small population of neurons. This activity is then propagated throughout the undamaged CA3 network inducing highly rhythmic discharges. Thus mechanical brain injury initiates immediate functional changes that exceed the lesion site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Off-site effects of soil erosion are becoming increasingly important, particularly the pollution of surface waters. In order to develop environmentally efficient and cost effective mitigation options it is essential to identify areas that bear both a high erosion risk and high connectivity to surface waters. This paper introduces a simple risk assessment tool that allows the delineation of potential critical source areas (CSA) of sediment input into surface waters concerning the agricultural areas of Switzerland. The basis are the erosion risk map with a 2 m resolution (ERM2) and the drainage network, which is extended by drained roads, farm tracks, and slope depressions. The probability of hydrological and sedimentological connectivity is assessed by combining soil erosion risk and extended drainage network with flow distance calculation. A GIS-environment with multiple-flow accumulation algorithms is used for routing runoff generation and flow pathways. The result is a high resolution connectivity map of the agricultural area of Switzerland (888,050 ha). Fifty-five percent of the computed agricultural area is potentially connected with surface waters, 45% is not connected. Surprisingly, the larger part of 34% (62% of the connected area) is indirectly connected with surface waters through drained roads, and only 21% are directly connected. The reason is the topographic complexity and patchiness of the landscape due to a dense road and drainage network. A total of 24% of the connected area and 13% of the computed agricultural area, respectively, are rated with a high connectivity probability. On these CSA an adapted land use is recommended, supported by vegetated buffer strips preventing sediment load. Even areas that are far away from open water bodies can be indirectly connected and need to be included in planning of mitigation measures. Thus, the connectivity map presented is an important decision-making tool for policy-makers and extension services. The map is published on the web and thus available for application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the structural characterization of junctions between atomically well-defined graphene nanoribbons (GNRs) by means of low-temperature, noncontact scanning probe microscopy. We show that the combination of simultaneously acquired frequency shift and tunneling current maps with tight binding (TB) simulations allows a comprehensive characterization of the atomic connectivity in the GNR junctions. The proposed approach can be generally applied to the investigation of graphene nanomaterials and their interconnections and is thus expected to become an important tool in the development of graphene-based circuitry.