37 resultados para SMA connector
Resumo:
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. METHODS IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. RESULTS iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and alpha-smooth muscle actin (alpha-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. CONCLUSION iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis.
Resumo:
BACKGROUND: Spinal muscular atrophy (SMA) is a fatal motor neuron disease of childhood that is caused by mutations in the SMN1 gene. Currently, no effective treatment is available. One possible therapeutic approach is the use of antisense oligos (ASOs) to redirect the splicing of the paralogous gene SMN2, thus increasing functional SMN protein production. Various ASOs with different chemical properties are suitable for these applications, including a morpholino oligomer (MO) variant with a particularly excellent safety and efficacy profile. OBJECTIVE: We investigated a 25-nt MO sequence targeting the negative intronic splicing silencer (ISS-N1) 10 to 34 region. METHODS: We administered a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) in the SMAΔ7 mouse model and evaluated the effect and neuropathologic phenotype. We tested different concentrations (from 2 to 24 nM) and delivery protocols (intracerebroventricular injection, systemic injection, or both). We evaluated the treatment efficacy regarding SMN levels, survival, neuromuscular phenotype, and neuropathologic features. RESULTS: We found that a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) exhibited superior efficacy in transgenic SMAΔ7 mice compared with previously described sequences. In our experiments, the combination of local and systemic administration of MO (bare or conjugated to octaguanidine) was the most effective approach for increasing full-length SMN expression, leading to robust improvement in neuropathologic features and survival. Moreover, we found that several small nuclear RNAs were deregulated in SMA mice and that their levels were restored by MO treatment. CONCLUSION: These results indicate that MO-mediated SMA therapy is efficacious and can result in phenotypic rescue, providing important insights for further development of ASO-based therapeutic strategies in SMA patients.
Resumo:
Introduction: Schizophrenia patients frequently suffer from complex motor abnormalities including fine and gross motor disturbances, abnormal involuntary movements, neurological soft signs and parkinsonism. These symptoms occur early in the course of the disease, continue in chronic patients and may deteriorate with antipsychotic medication. Furthermore gesture performance is impaired in patients, including the pantomime of tool use. Whether schizophrenia patients would show difficulties of actual tool use has not yet been investigated. Human tool use is complex and relies on a network of distinct and distant brain areas. We therefore aim to test if schizophrenia patients had difficulties in tool use and to assess associations with structural brain imaging using voxel based morphometry (VBM) and tract based spatial statistics (TBSS). Methode: In total, 44 patients with schizophrenia (DSM-5 criteria; 59% men, mean age 38) underwent structural MR imaging and performed the Tool-Use test. The test examines the use of a scoop and a hammer in three conditions: pantomime (without the tool), demonstration (with the tool) and actual use (with a recipient object). T1-weighted images were processed using SPM8 and DTI-data using FSL TBSS routines. To assess structural alterations of impaired tool use we first compared gray matter (GM) volume in VBM and white matter (WM) integrity in TBSS data of patients with and without difficulties of actual tool use. Next we explored correlations of Tool use scores and VBM and TBSS data. Group comparisons were family wise error corrected for multiple tests. Correlations were uncorrected (p < 0.001) with a minimum cluster threshold of 17 voxels (equivalent to a map-wise false positive rate of alpha < 0.0001 using a Monte Carlo procedure). Results: Tool use was impaired in schizophrenia (43.2% pantomime, 11.6% demonstration, 11.6% use). Impairment was related to reduced GM volume and WM integrity. Whole brain analyses detected an effect in the SMA in group analysis. Correlations of tool use scores and brain structure revealed alterations in brain areas of the dorso-dorsal pathway (superior occipital gyrus, superior parietal lobule, and dorsal premotor area) and the ventro-dorsal pathways (middle occipital gyrus, inferior parietal lobule) the action network, as well as the insula and the left hippocampus. Furthermore, significant correlations within connecting fiber tracts - particularly alterations within the bilateral corona radiata superior and anterior as well as the corpus callosum -were associated with Tool use performance. Conclusions: Tool use performance was impaired in schizophrenia, which was associated with reduced GM volume in the action network. Our results are in line with reports of impaired tool use in patients with brain lesions particularly of the dorso-dorsal and ventro-dorsal stream of the action network. In addition an effect of tool use on WM integrity was shown within fiber tracts connecting regions important for planning and executing tool use. Furthermore, hippocampus is part of a brain system responsible for spatial memory and navigation.The results suggest that structural brain alterations in the common praxis network contribute to impaired tool use in schizophrenia.
Resumo:
OBJECTIVES Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein, which results in motoneuron loss. Therapeutic strategies to increase SMN levels including drug compounds, antisense oligonucleotides, and scAAV9 gene therapy have proved effective in mice. We wished to determine whether reduction of SMN in postnatal motoneurons resulted in SMA in a large animal model, whether SMA could be corrected after development of muscle weakness, and the response of clinically relevant biomarkers. METHODS Using intrathecal delivery of scAAV9 expressing an shRNA targeting pig SMN1, SMN was knocked down in motoneurons postnatally to SMA levels. This resulted in an SMA phenotype representing the first large animal model of SMA. Restoration of SMN was performed at different time points with scAAV9 expressing human SMN (scAAV9-SMN), and electrophysiology measurements and pathology were performed. RESULTS Knockdown of SMN in postnatal motoneurons results in overt proximal weakness, fibrillations on electromyography indicating active denervation, and reduced compound muscle action potential (CMAP) and motor unit number estimation (MUNE), as in human SMA. Neuropathology showed loss of motoneurons and motor axons. Presymptomatic delivery of scAAV9-SMN prevented SMA symptoms, indicating that all changes are SMN dependent. Delivery of scAAV9-SMN after symptom onset had a marked impact on phenotype, electrophysiological measures, and pathology. INTERPRETATION High SMN levels are critical in postnatal motoneurons, and reduction of SMN results in an SMA phenotype that is SMN dependent. Importantly, clinically relevant biomarkers including CMAP and MUNE are responsive to SMN restoration, and abrogation of phenotype can be achieved even after symptom onset.
Resumo:
BACKGROUND Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMECUS) or Swiss Holstein-Friesian (bMECCH) cows, and of primary bovine mammary alveolar epithelial cells stably transfected with simian virus-40 (SV-40) large T-antigen (MAC-T) for in vitro analyses. This was evaluated by testing their expression pattern of cytokeratin (CK) 7, 18, 19, vimentin, and α-smooth muscle actin (α-SMA). RESULTS The expression of the listed markers was assessed using real-time quantitative PCR, flow cytometry and immunofluorescence microscopy. Characteristic markers of the mesenchymal (vimentin), myoepithelial (α-SMA) and glandular secretory cells (CKs) showed differential expression among the studied cell cultures, partly depending on the analytical method used. The relative mRNA expression of vimentin, CK7 and CK19, respectively, was lower (P < 0.05) in immortalized than in primary mammary cell cultures. The stain index (based on flow cytometry) of CK7 and CK19 protein was lower (P < 0.05) in MAC-T than in bMECs, while the expression of α-SMA and CK18 showed an inverse pattern. Immunofluorescence microscopy analysis mostly confirmed the mRNA data, while partly disagreed with flow cytometry data (e.g., vimentin level in MAC-T). The differential expression of CK7 and CK19 allowed discriminating between immortal and primary mammary cultures. CONCLUSIONS The expression of the selected widely used cell type markers in primary and immortalized MEC cells did not allow a clear preference between these two cell models for in vitro analyses studying aspects of milk composition. All tested cell models exhibited to a variable degree epithelial and mesenchymal features. Thus, based on their characterization with widely used cell markers, none of these cultures represent an unequivocal alveolar mammary epithelial cell model. For choosing the appropriate in vitro model additional properties such as the expression profile of specific proteins of interest (e.g., transporter proteins) should equally be taken into account.
Resumo:
Spinal muscular atrophy (SMA) is characterized by motoneuron loss and muscle weakness. However, the structural and functional deficits that lead to the impairment of the neuromuscular system remain poorly defined. By electron microscopy, we previously found that neuromuscular junctions (NMJs) and muscle fibres of the diaphragm are among the earliest affected structures in the severe mouse SMA model. Because of certain anatomical features, i.e. its thinness and its innervation from the cervical segments of the spinal cord, the diaphragm is particularly suitable to characterize both central and peripheral events. Here we show by immunohistochemistry that, at postnatal day 3, the cervical motoneurons of SMA mice receive less stimulatory synaptic inputs. Moreover, their mitochondria become less elongated which might represent an early stage of degeneration. The NMJs of the diaphragm of SMA mice show a loss of synaptic vesicles and active zones. Moreover, the partly innervated endplates lack S100 positive perisynaptic Schwann cells (PSCs). We also demonstrate the feasibility of comparing the proteomic composition between diaphragm regions enriched and poor in NMJs. By this approach we have identified two proteins that are significantly upregulated only in the NMJ-specific regions of SMA mice. These are apoptosis inducing factor 1 (AIFM1), a mitochondrial flavoprotein that initiates apoptosis in a caspase-independent pathway, and four and a half Lim domain protein 1 (FHL1), a regulator of skeletal muscle mass that has been implicated in several myopathies.
Resumo:
BACKGROUND & AIMS Vascular hyporeactivity to vasoconstrictors contributes to splanchnic arterial vasodilatation and hemodynamic dysregulation in portal hypertension. Neuropeptide Y (NPY), a sympathetic cotransmitter, has been shown to improve adrenergic vascular contractility in portal hypertensive rats and markedly attenuate hyperdynamic circulation. To further characterize the NPY-effects in portal hypertension, we investigated its role for non-receptor-mediated vasoconstriction in the superior mesenteric artery (SMA) of portal vein ligated (PVL) and sham-operated rats. METHODS Ex vivo SMA perfusion of PVL and sham rats was used to analyse the effects of NPY on pressure response to non-receptor-mediated vasoconstriction. Dose-response curves to KCl (30-300 mM) were used to bypass G protein-coupled receptor mechanisms. Potential involvement of the cyclooxygenase-pathway was tested by non-selective cyclooxygenase-inhibition using indomethacin. RESULTS KCl-induced vascular contractility but not vascular sensitivity was significantly attenuated in PVL rats as compared with sham rats. Administration of NPY resulted in an augmentation of KCl-evoked vascular sensitivity being not different between study groups. However, KCl-induced vascular contractility was markedly more enhanced in PVL rats, thus, vascular response was no more significantly different between PVL and sham rats after addition of NPY. Administration of indomethacin abolished the NPY-induced enhancement of vasoconstriction. CONCLUSIONS Receptor-independent vascular contractility is impaired in mesenteric arteries in portal hypertension. NPY improves non-receptor mediated mesenteric vasoconstriction more effective in portal hypertension than in healthy conditions correcting splanchnic vascular hyporesponsiveness. This beneficial vasoactive action of NPY adds to its well known more pronounced effects on adrenergic vasoconstriction in portal hypertension making it a promising therapeutic agent in portal hypertension.