62 resultados para SIMPLEX-VIRUS-INFECTION
Resumo:
Few studies have evaluated the prevalence of replicating hepatitis C virus (HCV) infection in sub-Saharan Africa. Among 1812 individuals infected with human immunodeficiency virus, no patient in rural Mozambique and 4 patients in urban Zambia were positive for anti-HCV antibodies. Of these, none had confirmed HCV replication.
Resumo:
We describe the largest outbreak of hepatitis B virus infection reported to date in the UK. Between July 2001 and December 2005, 237 cases were identified in Avon, South West England. The likely route of transmission was injecting drug use in 44% (104/237) and heterosexual intercourse in 30% (71/237) of cases. A case-control study in injectors showed that injecting crack cocaine [adjusted odds ratio (aOR) 23·8, 95% confidence interval (CI) 3·04-186, P<0·001] and sharing injecting paraphernalia in the year before diagnosis (aOR 16·67, 95% CI 1·78-100, P=0·010) were strongly associated with acute hepatitis B. In non-IDUs number of sexual partners and lack of consistent condom use were high compared to a national sample. We describe the control measures implemented in response to the outbreak. This outbreak has highlighted the problems associated with the low uptake from the national hepatitis B vaccination policy which targets high-risk groups, the difficulties of identifying those at risk of acquiring hepatitis B infection through heterosexual sex, and injecting crack cocaine as a risk factor for hepatitis B.
Resumo:
Plasmacytoid dendritic cells (pDCs) are the major producers of type I IFN in response to viral infection and have been shown to direct both innate and adaptive immune responses in vitro. However, in vivo evidence for their role in viral infection is lacking. We evaluated the contribution of pDCs to acute and chronic virus infection using the feeble mouse model of pDC functional deficiency. We have previously demonstrated that feeble mice have a defect in TLR ligand sensing. Although pDCs were found to influence early cytokine secretion, they were not required for control of viremia in the acute phase of the infection. However, T cell priming was deficient in the absence of functional pDCs and the virus-specific immune response was hampered. Ultimately, infection persisted in feeble mice. We conclude that pDCs are likely required for efficient T cell priming and subsequent viral clearance. Our data suggest that reduced pDC functionality may lead to chronic infection.
Resumo:
OBJECTIVES: Fever is one of the most commonly seen symptoms in the pediatric emergency department. The objective of this study was to observe how the rapid testing for influenza virus impacts on the management of children with fever. METHODS: We performed a review of our pediatric emergency department records during the 2008/2009 annual influenza season. The BinaxNow Influenza A+B test was performed on patients with the following criteria: age 1.0 to 16.0 years, fever greater than 38.5 °C, fever of less than 96 hours' duration after the onset of clinical illness, clinical signs compatible with acute influenza, and nontoxic appearance. Additional laboratory tests were performed at the treating physician's discretion. RESULTS: The influenza rapid antigen test was performed in 192 children. One hundred nine (57%) were influenza positive, with the largest fraction (101 patients) positive for influenza A. The age distribution did not differ between children with negative and positive test results (mean, 5.3 vs. 5.1 years, not statistically significant). A larger number of diagnostic tests were performed in the group of influenza-negative patients. Twice as many complete blood counts, C-reactive protein determinations, lumbar punctures, and urinalyses were ordered in the latter group. CONCLUSIONS: Rapid diagnosis of influenza in the pediatric emergency department affects the management of febrile children as the confirmation of influenza virus infection decreases additional diagnostic tests ordered.
Resumo:
Signaling lymphocyte activation molecule (SLAM) or CD150 can function as a receptor for the canine distemper virus (CDV) in vitro. The expression of SLAM was studied using immunohistochemistry in order to evaluate the presence and distribution of the receptor in dogs in vivo. Additionally, receptor expression was assessed after experimental infection of dogs with CDV. In 7 control dogs without distemper virus, the receptor was found in various tissues, mostly on cells morphologically identified as lymphocytes and macrophages. In 7 dogs with early distemper lesions characterized by presence of the virus, higher numbers of SLAM-expressing cells were found in multiple tissues recognized as targets of CDV compared with those in control dogs. These findings suggest that SLAM, a putative distemper receptor, is expressed in dogs in vivo. Additionally, virus infection is associated with up-regulation of SLAM, potentially causing an amplification of virus in the host.
Resumo:
As oxidative stress has been implicated in the pathogenesis of certain viral diseases we determined antioxidant and prooxidant parameters in lungs and bronchoalveolar lavage fluid (BALF) of mice infected with a lethal dose of influenza A/PR8/34 virus. Viral infection was characterized by massive infiltration of leukocytes, mainly polymorphonuclear leukocytes, into the alveolar space. The total number of BALF cells increased up to 8-fold (day 3 post-infection) and these cells appeared activated as judged by their increased rates of superoxide anion radical (O2-.) generation upon stimulation. Maximal rates of radical generation by BALF cells during the early stages of infection were 15- or 70-fold higher than those of cells from control animals when expressed per cell or total BALF cells, respectively. At the terminal stages of infection the total capacity of BALF cells to release O2-. declined to approximately 35-fold the control values. Infection also resulted in increased in vivo formation of hydrogen peroxide (H2O2) within the lungs at a time that coincided with the maximal capacity of BALF cells to release O2-.. Whereas pulmonary activities of glutathione peroxidase and reductase remained unaltered, levels of ascorbate in the cell-free BALF decreased significantly during the early stages of the infection and then returned to normal levels and above, late in infection. The oxidation state of the dehydroascorbic acid/ascorbate couple increased concomitantly with the decrease in ascorbate concentrations early in infection and remained elevated throughout the infection. As assessed by the prevention of peroxyl radical-induced loss of phycoerythrin fluorescence, the total antioxidant capacity present in lung tissue homogenate from terminally ill animals was not diminished when compared to that prepared from lungs of control mice. We conclude that although early stages of influenza infection are associated with the presence of oxidative stress in the lung tissue and alveolar fluid lining the epithelial cells, this stress does not appear to overwhelm local antioxidant defenses. The results therefore do not support a direct causative role of oxidative tissue damage in the pathogenesis of influenza virus infection.
Resumo:
In addition to classically defined immune mechanisms, cell-intrinsic processes can restrict virus infection and have shaped virus evolution. The details of this virus-host interaction are still emerging. Following a genome-wide siRNA screen for host factors affecting replication of Semliki Forest virus (SFV), a positive-strand RNA (+RNA) virus, we found that depletion of nonsense-mediated mRNA decay (NMD) pathway components Upf1, Smg5, and Smg7 led to increased levels of viral proteins and RNA and higher titers of released virus. The inhibitory effect of NMD was stronger when virus replication efficiency was impaired by mutations or deletions in the replicase proteins. Consequently, depletion of NMD components resulted in a more than 20-fold increase in production of these attenuated viruses. These findings indicate that a cellular mRNA quality control mechanism serves as an intrinsic barrier to the translation of early viral proteins and the amplification of +RNA viruses in animal cells.
Resumo:
BACKGROUND Observational studies of a putative association between hormonal contraception (HC) and HIV acquisition have produced conflicting results. We conducted an individual participant data (IPD) meta-analysis of studies from sub-Saharan Africa to compare the incidence of HIV infection in women using combined oral contraceptives (COCs) or the injectable progestins depot-medroxyprogesterone acetate (DMPA) or norethisterone enanthate (NET-EN) with women not using HC. METHODS AND FINDINGS Eligible studies measured HC exposure and incident HIV infection prospectively using standardized measures, enrolled women aged 15-49 y, recorded ≥15 incident HIV infections, and measured prespecified covariates. Our primary analysis estimated the adjusted hazard ratio (aHR) using two-stage random effects meta-analysis, controlling for region, marital status, age, number of sex partners, and condom use. We included 18 studies, including 37,124 women (43,613 woman-years) and 1,830 incident HIV infections. Relative to no HC use, the aHR for HIV acquisition was 1.50 (95% CI 1.24-1.83) for DMPA use, 1.24 (95% CI 0.84-1.82) for NET-EN use, and 1.03 (95% CI 0.88-1.20) for COC use. Between-study heterogeneity was mild (I2 < 50%). DMPA use was associated with increased HIV acquisition compared with COC use (aHR 1.43, 95% CI 1.23-1.67) and NET-EN use (aHR 1.32, 95% CI 1.08-1.61). Effect estimates were attenuated for studies at lower risk of methodological bias (compared with no HC use, aHR for DMPA use 1.22, 95% CI 0.99-1.50; for NET-EN use 0.67, 95% CI 0.47-0.96; and for COC use 0.91, 95% CI 0.73-1.41) compared to those at higher risk of bias (pinteraction = 0.003). Neither age nor herpes simplex virus type 2 infection status modified the HC-HIV relationship. CONCLUSIONS This IPD meta-analysis found no evidence that COC or NET-EN use increases women's risk of HIV but adds to the evidence that DMPA may increase HIV risk, underscoring the need for additional safe and effective contraceptive options for women at high HIV risk. A randomized controlled trial would provide more definitive evidence about the effects of hormonal contraception, particularly DMPA, on HIV risk.
Resumo:
Classical swine fever virus infection of pigs causes disease courses from life-threatening to asymptomatic, depending on the virulence of the virus strain and the immunocompetence of the host. The virus targets immune cells, which are central in orchestrating innate and adaptive immune responses such as macrophages and conventional and plasmacytoid dendritic cells. Here, we review current knowledge and concepts aiming to explain the immunopathogenesis of the disease at both the host and the cellular level. We propose that the interferon type I system and in particular the interaction of the virus with plasmacytoid dendritic cells and macrophages is crucial to understand elements governing the induction of protective rather than pathogenic immune responses. The review also concludes that despite the knowledge available many aspects of classical swine fever immunopathogenesis are still puzzling.
Resumo:
BACKGROUND Pyogenic tonsillitis may often be observed in the general Western population. In severe cases, it may require antibiotic treatment or even hospitalization and often a prompt clinical response will be noted. Here we present an unusual case of progressive multiple organ failure including fulminant liver failure following acute tonsillitis initially mistaken for "classic" pyogenic (that is bacterial) tonsillitis. CASE PRESENTATION A 68-year-old previously healthy white man was referred with suspicion of pyogenic angina. After tonsillectomy, he developed acute liver failure and consecutive multiple organ failure including acute hemodynamic, pulmonary and dialysis-dependent renal failure. Immunohistopathological analysis of his tonsils and liver as well as serum polymerase chain reaction analyses revealed herpes simplex virus-2 to be the causative pathogen. Treatment included high-dose acyclovir and multiorgan supportive intensive care therapy. His final outcome was favorable. CONCLUSIONS Fulminant herpes simplex virus-2-induced multiple organ failure is rarely observed in the Western hemisphere and should be considered a potential diagnosis in patients with tonsillitis and multiple organ failure including acute liver failure. From a clinical perspective, it seems important to note that fulminant herpes simplex virus-2 infection may masquerade as "routine" bacterial severe sepsis/septic shock. This persevering condition should be diagnosed early and treated goal-oriented in order to gain control of this life-threatening condition.
Resumo:
There have been many studies pertaining to the management of herpetic meningoencephalitis (HME), but the majority of them have focussed on virologically unconfirmed cases or included only small sample sizes. We have conducted a multicentre study aimed at providing management strategies for HME. Overall, 501 adult patients with PCR-proven HME were included retrospectively from 35 referral centres in 10 countries; 496 patients were found to be eligible for the analysis. Cerebrospinal fluid (CSF) analysis using a PCR assay yielded herpes simplex virus (HSV)-1 DNA in 351 patients (70.8%), HSV-2 DNA in 83 patients (16.7%) and undefined HSV DNA type in 62 patients (12.5%). A total of 379 patients (76.4%) had at least one of the specified characteristics of encephalitis, and we placed these patients into the encephalitis presentation group. The remaining 117 patients (23.6%) had none of these findings, and these patients were placed in the nonencephalitis presentation group. Abnormalities suggestive of encephalitis were detected in magnetic resonance imaging (MRI) in 83.9% of the patients and in electroencephalography (EEG) in 91.0% of patients in the encephalitis presentation group. In the nonencephalitis presentation group, MRI and EEG data were suggestive of encephalitis in 33.3 and 61.9% of patients, respectively. However, the concomitant use of MRI and EEG indicated encephalitis in 96.3 and 87.5% of the cases with and without encephalitic clinical presentation, respectively. Considering the subtle nature of HME, CSF HSV PCR, EEG and MRI data should be collected for all patients with a central nervous system infection.
Resumo:
Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.
Resumo:
Background: Alcohol is heavily consumed in sub-Saharan Africa and affects HIV transmission and treatment and is difficult to measure. Our goal was to examine the test characteristics of a direct metabolite of alcohol consumption, phosphatidylethanol (PEth). Methods: Persons infected with HIV were recruited from a large HIV clinic in southwestern Uganda. We conducted surveys and breath alcohol concentration (BRAC) testing at 21 daily home or drinking establishment visits, and blood was collected on day 21 (n = 77). PEth in whole blood was compared with prior 7-, 14-, and 21-day alcohol consumption. Results: (i) The receiver operator characteristic area under the curve (ROC-AUC) was highest for PEth versus any consumption over the prior 21 days (0.92; 95% confidence interval [CI]: 0.86 to 0.97). The sensitivity for any detectable PEth was 88.0% (95% CI: 76.0 to 95.6) and the specificity was 88.5% (95% CI: 69.8 to 97.6). (ii) The ROC-AUC of PEth versus any 21-day alcohol consumption did not vary with age, body mass index, CD4 cell count, hepatitis B virus infection, and antiretroviral therapy status, but was higher for men compared with women (p = 0.03). (iii) PEth measurements were correlated with several measures of alcohol consumption, including number of drinking days in the prior 21 days (Spearman r = 0.74, p < 0.001) and BRAC (r = 0.75, p < 0.001). Conclusions: The data add support to the body of evidence for PEth as a useful marker of alcohol consumption with high ROC-AUC, sensitivity, and specificity. Future studies should further address the period and level of alcohol consumption for which PEth is detectable.
Resumo:
Homeostasis within the central nervous system (CNS) is a prerequisite to elicit proper neuronal function. The CNS is tightly sealed from the changeable milieu of the blood stream by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB). Whereas the BBB is established by specialized endothelial cells of CNS microvessels, the BCSFB is formed by the epithelial cells of the choroid plexus. Both constitute physical barriers by a complex network of tight junctions (TJs) between adjacent cells. During many CNS inflammatory disorders, such as multiple sclerosis, human immunodeficiency virus infection, or Alzheimer's disease, production of pro-inflammatory cytokines, matrix metalloproteases, and reactive oxygen species are responsible for alterations of CNS barriers. Barrier dysfunction can contribute to neurological disorders in a passive way by vascular leakage of blood-borne molecules into the CNS and in an active way by guiding the migration of inflammatory cells into the CNS. Both ways may directly be linked to alterations in molecular composition, function, and dynamics of the TJ proteins. This review summarizes current knowledge on the cellular and molecular aspects of the functional and dysfunctional TJ complexes at the BBB and the BCSFB, with a particular emphasis on CNS inflammation and the role of reactive oxygen species.