37 resultados para SILICON-CARBIDE GRAINS
Resumo:
Most case studies of successful high-technology industry regions highlight the role of research universities in fostering regional economic development. The Portland, Oregon, region managed to root a thriving high-tech industry in the absence of this critical factor. In this article, I present a case study of the evolution of Portland's high-tech industry and propose that high-tech firms can act as surrogate universities that attract and develop labor, create knowledge, and function as incubators for startups. I conclude that planners working to develop high-tech industries in regions without major research universities should attract R&D-intensive firms, maintain information on key busineses and entrepreneurial ventures, support an innovation milieu, and set realistic goals.
Resumo:
Currently, most cosmic ray data are obtained by detectors on satellites, aircraft, high-altitude balloons and ground (neutron monitors). In our work, we examined whether Liulin semiconductor spectrometers (simple silicon planar diode detectors with spectrometric properties) located at high mountain observatories could contribute new information to the monitoring of cosmic rays by analyzing data from selected solar events between 2005 and 2013. The decision thresholds and detection limits of these detectors placed at Jungfraujoch (Switzerland; 3475 m a.s.l.; vertical cut-off rigidity 4.5 GV) and Lomnicky stıt (Slovakia; 2633 m a.s.l.; vertical cut-off rigidity 3.84 GV) highmountain observatories were determined. The data showed that only the strongest variations of the cosmic ray flux in this period were detectable. The main limitation in the performance of these detectors is their small sensitive volume and low sensitivity of the PIN photodiode to neutrons.
Resumo:
Grand Canonical Monte Carlo simulations are used to reproduce the N₂/CO ratio ranging between 1.7 x 10⁻³ and 1.6 x 10⁻² observed in situ in the Jupiter-family comet 67 P/Churyumov-Gerasimenko (67 P) by the ROSINA mass spectrometer on board the Rosetta spacecraft. By assuming that this body has been agglomerated from clathrates in the protosolar nebula (PSN), simulations are developed using elaborated interatomic potentials for investigating the temperature dependence of the trapping within a multiple-guest clathrate formed from a gas mixture of CO and N₂ in proportions corresponding to those expected for the PSN. By assuming that 67 P agglomerated from clathrates, our calculations suggest the cometary grains must have been formed at temperatures ranging between ~ 31.8 and 69.9 K in the PSN to match the N₂/CO ratio measured by the ROSINA mass spectrometer. The presence of clathrates in Jupiter-family comets could then explain the potential N₂ depletion (factor of up to ~ 87 compared to the protosolar value) measured in 67 P/Churyumov-Gerasimenko.
Resumo:
From previous experiments, it was evident that the accumulation of zinc in maturing wheat grains is highly regulated, but the regulatory mechanisms involved are not yet identified. In this study, we determined the transfer of radiolabelled zinc (fed directly into a leaf flap) from the flag leaf lamina to the grains. We also determined how this zinc transfer was affected by feeding additional unlabeled zinc (1 μmol per plant) either into the flag leaf sheath or the peduncle. Most of the 65Zn was retained in the feeding flap. A high percentage of the zinc exported from the flap accumulated in the grains with little accumulation of radiolabel in the other parts of the shoot. Unlabeled zinc remained mainly in the feeding flap and in the parts reached by the transpiration stream from the feeding position. The transfer of radiolabelled zinc was essentially not influenced by unlabeled zinc fed into another plant part. Our results suggest that the loading of zinc into the phloem and the mass flow in the sieve tubes might regulate zinc redistribution within the wheat shoot.