107 resultados para SIGHT VELOCITY DISTRIBUTIONS
Resumo:
Distal oesophageal spasm is a rare and under-investigated motility abnormality. Recent studies indicate effective bolus transit in varying percentages of distal oesophageal spasm patients.
Resumo:
The penetration, translocation, and distribution of ultrafine and nanoparticles in tissues and cells are challenging issues in aerosol research. This article describes a set of novel quantitative microscopic methods for evaluating particle distributions within sectional images of tissues and cells by addressing the following questions: (1) is the observed distribution of particles between spatial compartments random? (2) Which compartments are preferentially targeted by particles? and (3) Does the observed particle distribution shift between different experimental groups? Each of these questions can be addressed by testing an appropriate null hypothesis. The methods all require observed particle distributions to be estimated by counting the number of particles associated with each defined compartment. For studying preferential labeling of compartments, the size of each of the compartments must also be estimated by counting the number of points of a randomly superimposed test grid that hit the different compartments. The latter provides information about the particle distribution that would be expected if the particles were randomly distributed, that is, the expected number of particles. From these data, we can calculate a relative deposition index (RDI) by dividing the observed number of particles by the expected number of particles. The RDI indicates whether the observed number of particles corresponds to that predicted solely by compartment size (for which RDI = 1). Within one group, the observed and expected particle distributions are compared by chi-squared analysis. The total chi-squared value indicates whether an observed distribution is random. If not, the partial chi-squared values help to identify those compartments that are preferential targets of the particles (RDI > 1). Particle distributions between different groups can be compared in a similar way by contingency table analysis. We first describe the preconditions and the way to implement these methods, then provide three worked examples, and finally discuss the advantages, pitfalls, and limitations of this method.
Resumo:
BACKGROUND: Photodynamic therapy (PDT) is the standard treatment procedure for many forms of exudative and/or neovascular AMD. Despite therapy, visual acuity often drops to low vision levels. The cost efficiency of treating the eye in which vision is worse is therefore the subject of some controversy. PATIENTS AND METHODS: A retrospective case-control study was conducted in all patients who were treated with PDT at the Universitätsspital Zürich between September 1999 and November 2004. Each patient's first (with worse vision) and second (with better vision) eyes were compared for situation on presentation and course during treatment. RESULTS: In 117/228 cases (51.3%) visual acuity of the treated eye was better than (or identical to) that of the fellow eye at presentation. Visual acuity before therapy was an average of 0.58+/-0.27 logMAR [Snellen: 0.26 (0.14-0.49)] in the eyes with better visual acuity and 0.69+/-0.4 logMAR [Snellen 0.20 (0.08-0.51)] in the fellow eyes (p=0.015). After therapy there was no significant difference between the patient groups in visual acuity or in the magnitude of any change in visual acuity, or in lesion size or change in lesion size. CONCLUSION: The outcome of PDT of a second eye (with better visual acuity) is not significantly better than the result obtained in the first eye (the one with worse visual acuity initially).