51 resultados para Rolling Meadows
Resumo:
Seed predation impacts heavily on plant populations and community composition in grasslands. In particular, generalist seed predators may contribute to biotic resistance, i.e. the ability of resident species in a community to reduce the success of non-indigenous plant invaders. However, little is known of predators' preferences for seeds of indigenous or non-indigenous plant species or how seed predation varies across communities. We hypothesize that seed predation does not differ between indigenous and non-indigenous plant species and that seed predation is positively related to plant species diversity in the resident community. The seed removal of 36 indigenous and non-indigenous grassland species in seven extensively or intensively managed hay meadows across Switzerland covering a species-richness gradient of 18-50 plant species per unit area (c. 2 m(2)) was studied. In mid-summer 2011, c. 24,000 seeds were exposed to predators in Petri dishes filled with sterilized soil, and the proportions of seeds removed were determined after three days' exposure. These proportions varied among species (9.2-62.5%) and hay meadows (17.8-48.6%). Seed removal was not related to seed size. Moreover, it did not differ between indigenous and non-indigenous species, suggesting that mainly generalist seed predators were active. However, seed predation was positively related to plant species richness across a gradient in the range of 18-38 species per unit area, representing common hay meadows in Switzerland. Our results suggest that generalist post-dispersal seed predation contributes to biotic resistance and may act as a filter to plant invasion by reducing the propagule pressure of non-local plant species.
Resumo:
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.
Resumo:
BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.
Resumo:
INTRODUCTION Pontocerebellar hypoplasia Type 2 (PCH2) is a rare autosomal recessive condition, defined on MRI by a small cerebellum and ventral pons. Clinical features are severe developmental delay, microcephaly and dyskinesia.Ninety percent carry a p.A307S mutation in the TSEN54-gene. Our aim was to describe the natural course including neurological and developmental features and other aspects of care in a homogeneous group of PCH2 patients all carrying the p.A307S mutation. PATIENTS AND METHODS Patients were recruited via the German patients' organizations. Inclusion criteria were imaging findings of PCH2 and a p.A307S mutation. Data were collected using medical reports and patient questionnaires discussed in a standardized telephone interview. RESULTS Thirty-three patients were included. When considering survival until age 11 years, 53% of children had died Weight, length and head circumference, mostly in the normal range at birth, became abnormal, especially head circumference (-5.58 SD at age 5 yrs). Neurologic symptoms: Choreathetosis was present in 88% (62% with pyramidal signs), 12% had pure spasticity. Epileptic seizures were manifest in 82%, status epilepticus in 39%. Non-epileptic dystonic attacks occurred in 33%. General symptoms: feeding difficulties were recorded in 100%, sleep disorder in 96%, apneas in 67% and recurrent infections in 52%; gastroesophageal reflux disease was diagnosed in 73%, 67% got percutaneous endoscopic gastrostomy and 36% a Nissen-fundoplication. Neurodevelopmental data: All children made progress, but on a low level: such as fixing and following with the eyes was seen in 76%, attempting to grasp objects (76%), moderate head control (73%), social smile (70%), rolling from prone to supine (58%), and sitting without support (9%). Ten percent lost achieved abilities on follow-up. The presence of prenatal symptoms did not correlate with outcome. CONCLUSION Phenotype of this genetically homogeneous group of PCH2 children was severe with reduced survival, but compatible with some developmental progress. Our data support the hypothesis of an early onset degeneration which thereafter stabilizes.
Resumo:
The response of montane and subalpine hay meadow plant and arthropod communities to the application of liquid manure and aerial irrigation – two novel, rapidly spreading management practices – remains poorly understood, which hampers the formulation of best practice management recommendations for both hay production and biodiversity preservation. In these nutrient-poor mountain grasslands, a moderate management regime could enhance overall conditions for biodiversity. This study experimentally assessed, at the site scale, among low-input montane and subalpine meadows, the short-term effects (1 year) of a moderate intensification (slurry fertilization: 26.7–53.3 kg N·ha−1·year−1; irrigation with sprinklers: 20 mm·week−1; singly or combined together) on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass in the inner European Alps (Valais, SW Switzerland). Results show that (1) montane and subalpine hay meadow ecological communities respond very rapidly to an intensification of management practices; (2) on a short-term basis, a moderate intensification of very low-input hay meadows has positive effects on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass; (3) vegetation structure is likely to be the key factor limiting arthropod abundance and biomass. Our ongoing experiments will in the longer term identify which level of management intensity achieves an optimal balance between biodiversity and hay production.
Resumo:
Bees are a key component of biodiversity as they ensure a crucial ecosystem service: pollination. This ecosystem service is nowadays threatened, because bees suffer from agricultural intensification. Yet, bees rarely benefit from the measures established to promote biodiversity in farmland, such as agri-environment schemes (AES). We experimentally tested if the spatio-temporal modification of mowing regimes within extensively managed hay meadows, a widespread AES, can promote bees. We applied a randomized block design, replicated 12 times across the Swiss lowlands, that consisted of three different mowing treatments: 1) first cut not before 15 June (conventional regime for meadows within Swiss AES); 2) first cut not before 15 June, as treatment 1 but with 15% of area left uncut serving as a refuge; 3) first cut not before 15 July. Bees were collected with pan traps, twice during the vegetation season (before and after mowing). Wild bee abundance and species richness significantly increased in meadows where uncut refuges were left, in comparison to meadows without refuges: there was both an immediate (within year) and cumulative (from one year to the following) positive effect of the uncut refuge treatment. An immediate positive effect of delayed mowing was also evidenced in both wild bees and honey bees. Conventional AES could easily accommodate such a simple management prescription that promotes farmland biodiversity and is likely to enhance pollination services.
Resumo:
A higher risk of future range losses as a result of climate change is expected to be one of the main drivers of extinction trends in vascular plants occurring in habitat types of high conservation value. Nevertheless, the impact of the climate changes of the last 60 years on the current distribution and extinction patterns of plants is still largely unclear. We applied species distribution models to study the impact of environmental variables (climate, soil conditions, land cover, topography), on the current distribution of 18 vascular plant species characteristic of three threatened habitat types in southern Germany: (i) xero-thermophilous vegetation, (ii) mesophilous mountain grasslands (mountain hay meadows and matgrass communities), and (iii) wetland habitats (bogs, fens, and wet meadows). Climate and soil variables were the most important variables affecting plant distributions at a spatial level of 10 × 10 km. Extinction trends in our study area revealed that plant species which occur in wetland habitats faced higher extinction risks than those in xero-thermophilous vegetation, with the risk for species in mesophilous mountain grasslands being intermediary. For three plant species characteristic either of mesophilous mountain grasslands or wetland habitats we showed exemplarily that extinctions from 1950 to the present day have occurred at the edge of the species’ current climatic niche, indicating that climate change has likely been the main driver of extinction. This is largely consistent with current extinction trends reported in other studies. Our study indicates that the analysis of past extinctions is an appropriate means to assess the impact of climate change on species and that vulnerability to climate change is both species- and habitat-specific.
Resumo:
1898 is a crucial moment in Spain’s cultural history: Losing its last Colonies Cuba and the Philippines to the USA caused an unprecedented crisis in Spanish self-understanding that set a complex process of spiritual reconstruction rolling. To rebuild Spanish cultural identity as isolated state nation without losing touch with those parts of the Colonial past that were felt as belonging to its broader cultural environment required sophisticated reflection. Cultural issues had to take over the function to bridge between national borders. Music got is own part in this recycling of the Colonial into the Hispanic.
Uterine torsion in Brown Swiss cattle: retrospective analysis from an alpine practice in Switzerland
Resumo:
The incidence of uterine torsion in cattle is 0.5–1 per cent of all calvings and up to 30 per cent of all dystocia cases (Berchtold and Rüsch 1993). The unstable suspension of the bovine uterus is a predisposition cited by different authors (Pearson 1971, Schulz and others 1975, Berchtold and Rüsch 1993). Age of the cow, season and weight and sex of the calf have been inconsistently reported to be associated with uterine torsion (Distl 1991, Frazer and others 1996, Tamm 1997). Small amount of fetal fluids and a large abdomen may contribute to uterine torsion (Berchtold and Rüsch 1993). Furthermore, some authors describe a predisposition in the Brown Swiss breed (Distl 1991, Schmid 1993, Frazer and others 1996) and in cows kept in alpine regions (Schmid 1993). Uterine torsion is predominantly seen under parturition, and the degree of torsion is most often between 180° and 360°. The direction is counter-clockwise in 60–90 per cent of the cases (Pearson 1971, Berchtold and Rüsch 1993, Erteld and others 2012). Vaginal delivery is possible after manual detorsion or after rolling of the cow, whereas caesarean section has to be performed after unsuccessful detorsion or if the cervix is not dilating adequately following successful correction of the torsion (Berchtold and Rüsch 1993, Frazer and others 1996). Out of all veterinary-assisted dystocia cases, 20 per cent (Aubry and others 2008) to 30 per cent (Berchtold and Rüsch 1993) are due to uterine torsion. Many publications describe fertility variables after dystocia, but only Schönfelder and coworkers described that 40 per cent of the cows got pregnant after uterine torsion followed by caesarean section (Schönfelder and Sobiraj 2005).
Resumo:
Palaeoecological studies in the "Alpe d'Essertse" area have provided much information about Vegetation changes and timberline fluctuations during the Holocene In this study we repeated previous biostratigraphic investigations using plant macrofossils to improve their temporal and taxonomie resolution and to test their reliability. By analyzing 0.5-cm layers of a lake sediment we reached a temporal resolution of 44 years, and we were able to reconstruct Vegetation changes in the surrounding area at species level. The sedimentary record analyzed extends from the Late-Glacial to the late Holocene Alpine grasslands (12'000-11'000 cal. BP) were afforested by Larix decidua, Juniperus nana, and Pinus cembra (11'000-9'600 cal. B.P). Stable subalpine larch-stone pine-forests (9'600^4'900 cal. BP) were followed by shrublands and meadows as a consequence of the climatically and anthropogenically induced destruction of forest Vegetation (4'900-2'600 cal. BP). Changes in the abundance of P. cembra and L. decidua needles as well as changes of the other taxa were consistent with those found in previous studies from the same lake. Our results demonstrate that plant-macrofossil records can be reproduced spatially and temporally on separate cores with independent 14C chronologies.
Resumo:
o reconstruct the vegetation and fire history of the Upper Engadine, two continuous sediment cores from Lej da Champfèr and Lej da San Murezzan (Upper Engadine Valley, southeastern Switzerland) were analysed for pollen, plant macrofossils, charcoal and kerogen. The chronologies of the cores are based on 38 radiocarbon dates. Pollen and macrofossil data suggest a rapid afforestation with Betula, Pinus sylvestris, Pinus cembra, and Larix decidua after the retreat of the glaciers from the lake catchments 11,000 cal years ago. This vegetation type persisted until ca. 7300 cal b.p. (5350 b.c.) when Picea replaced Pinus cembra. Pollen indicative of human impact suggests that in this high-mountain region of the central Alps strong anthropogenic activities began during the Early Bronze Age (3900 cal b.p., 1950 b.c.). Local human settlements led to vegetational changes, promoting the expansion of Larix decidua and Alnus viridis. In the case of Larix, continuing land use and especially grazing after fire led to the formation of Larix meadows. The expansion of Alnus viridis was directly induced by fire, as evidenced by time-series analysis. Subsequently, the process of forest conversion into open landscapes continued for millennia and reached its maximum at the end of the Middle Ages at around 500 cal b.p. (a.d. 1450).
Resumo:
PURPOSE OF REVIEW Neutrophil extravasation from the blood into tissues is initiated by tethering and rolling of neutrophils on endothelial cells, followed by neutrophil integrin activation and shear resistant arrest, crawling, diapedesis and breaching the endothelial basement membrane harbouring pericytes. Endothelial intercellular cell adhesion molecule (ICAM)-1 and ICAM-2, in conjunction with ICAM-1 on pericytes, critically contribute to each step. In addition, epithelial ICAM-1 is involved in neutrophil migration to peri-epithelial sites. The most recent findings on the role of ICAM-1 and ICAM-2 for neutrophil migration into tissues will be reviewed here. RECENT FINDINGS Signalling via endothelial ICAM-1 and ICAM-2 contributes to stiffness of the endothelial cells at sites of chronic inflammation and junctional maturation, respectively. Endothelial ICAM-2 contributes to neutrophil crawling and initiation of paracellular diapedesis, which then proceeds independent of ICAM-2. Substantial transcellular neutrophil diapedesis across the blood-brain barrier is strictly dependent on endothelial ICAM-1 and ICAM-2. Endothelial ICAM-1 or ICAM-2 is involved in neutrophil-mediated plasma leakage. ICAM-1 on pericytes assists the final step of neutrophil extravasation. Epithelial ICAM-1 rather indirectly promotes neutrophil migration to peri-epithelial sites. SUMMARY ICAM-1 and ICAM-2 are involved in each step of neutrophil extravasation, and have redundant but also distinct functions. Analysis of the role of endothelial ICAM-1 requires simultaneous consideration of ICAM-2.
Resumo:
Past treelines can rarely be recorded by pollen percentages alone, but pollen concentration, pollen influx, and plant macrofossils (including stomata of conifers) are more reliable indicators. In addition, ancient forest soils above today's treeline may trace the maximum upper expansion of the forest since the last glaciation. Charcoal in such soil profiles may be radiocarbon dated. Our example from the Central Swiss Alps at the Alpe d'Essertse consists of a plant-macrofossil diagram and pollen diagrams of the pond Gouille Rion at 2343 m a.s.l. and a sequence of soil profiles from 1780 m to 2600 m a.s.l. The area around the pond was forested with LariJc decidua and Pinus cembra between 9500 and 3600 BP. After 4700 BP the forest became more open and Juniperus nana and Alnus viridis expanded (together with Picea abies in the subalpine forest). Between 1700 and 900 BP the Juniperus nana and Alnus viridis scrubs declined while meadows and pastures took over, so that the pond Gouille Rion was definitively above timber line. The highest Holocene treeline was at 2400 to 2450 m a.s.l. (i.e. 50 to 100 m higher than the uppermost single specimen of Pinus cembra today) between 9000 and 4700 BP, but it is not yet dated in more detail. The highest charcoal of Pinus cembra at 2380 m a.s.l. has a radiocarbon date of 6010 ± 70 BP. Around 6900 BP a strong climatic deterioration caused an opening of timberline forest. First indicators of anthropogenic influence occurred at 4700 BP, when the forest limit started to move down. The lowering of timberline after 4700 BP was probably due to combined effects of human and climatic impact.
Resumo:
Lichens are very sensitive to habitat changes and their species richness is likely to decline under intensive land use. Currently, a comprehensive study analyzing lichen species richness in relation to land-use types, extending over different regions and including information on habitat variables, is missing for temperate grasslands. In three German regions we studied lichen species richness in 490 plots of 16 m2 representing different land-use types, livestock types, and habitat variables. Due to the absence of low-intensity pastures and substrates such as woody plants, deadwood and stones, there were no lichens in the 78 plots in Schorfheide-Chorin. In the two other regions, the richness of lichen species was 45 % higher in pastures than in meadows, and 77 % higher than in mown pastures, respectively. Among the pastures, the richness of all lichen species was on average 10 times higher in sheep-grazed pastures than in the ones grazed by cattle or horses. On average, the richness of all lichen species increased by 3.3 species per additional microhabitat. Furthermore, the richness of corticolous lichens increased by 1.2 species with 10 % higher cover of woody plants, lignicolous lichen species richness increased by 4.8 species with 1 % higher cover of deadwood, and saxicolous lichen species richness increased by 1.0 species with 1 % higher cover of stones. Our findings highlight the importance of low-intensity land use for lichen conservation. In particular, the degradation of grasslands rich in microhabitats and the destruction of lichen substrates by intensification, and conversion of unfertilized pastures formerly grazed at low intensity to meadows should be avoided to maintain lichen diversity.
Resumo:
A deeper understanding of past vegetation dynamics is required to better assess future vegetation responses to global warming in the Alps. Lake sediments from Lac de Bretaye, a small subalpine lake in the Northern Swiss Alps (1780 m a.s.l.), were analysed to reconstruct past vegetation dynamics for the entire Holocene, using pollen, macrofossil and charcoal analyses as main proxies. The results show that timberline reached the lake’s catchment area at around 10,300 cal. BP, supporting the hypothesis of a delayed postglacial afforestation in the Northern Alps. At the same time, thermophilous trees such as Ulmus, Tilia and Acer established in the lowlands and expanded to the altitude of the lake, forming distinctive boreo-nemoral forests with Betula, Pinus cembra and Larix decidua. From about 5000 to 3500 cal. BP, thermophilous trees declined because of increasing human land use, mainly driven by the mass expansion of Picea abies and severe anthropogenic fire activity. From the Bronze Age onwards (c. 4200–2800 cal. BP), grazing indicators and high values for charcoal concentration and influx attest an intensifying human impact, fostering the expansion of Alnus viridis and Picea abies. Hence, biodiversity in alpine meadows increased, whereas forest diversity declined, as can be seen in other regional records. We argue that the anticipated climate change and decreasing human impact in the Alps today will not only lead to an upward movement of timberline with consequent loss of area for grasslands, but also to a disruption of Picea abies forests, which may allow the re-expansion of thermophilous tree species.