41 resultados para Richmond upon Thames
Resumo:
The response of montane and subalpine hay meadow plant and arthropod communities to the application of liquid manure and aerial irrigation – two novel, rapidly spreading management practices – remains poorly understood, which hampers the formulation of best practice management recommendations for both hay production and biodiversity preservation. In these nutrient-poor mountain grasslands, a moderate management regime could enhance overall conditions for biodiversity. This study experimentally assessed, at the site scale, among low-input montane and subalpine meadows, the short-term effects (1 year) of a moderate intensification (slurry fertilization: 26.7–53.3 kg N·ha−1·year−1; irrigation with sprinklers: 20 mm·week−1; singly or combined together) on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass in the inner European Alps (Valais, SW Switzerland). Results show that (1) montane and subalpine hay meadow ecological communities respond very rapidly to an intensification of management practices; (2) on a short-term basis, a moderate intensification of very low-input hay meadows has positive effects on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass; (3) vegetation structure is likely to be the key factor limiting arthropod abundance and biomass. Our ongoing experiments will in the longer term identify which level of management intensity achieves an optimal balance between biodiversity and hay production.
Resumo:
Plants activate local and systemic defence mechanisms upon exposure to stress. This innate immune response is partially regulated by plant hormones, and involves the accumulation of defensive metabolites. Although local defence reactions to herbivores are well studied, less is known about the impact of root herbivory on shoot defence. Here, we examined the effects of belowground infestation by the western corn rootworm Diabrotica virgifera virgifera on aboveground resistance in maize. Belowground herbivory by D. v. virgifera induced aboveground resistance against the generalist herbivore Spodoptera littoralis, and the necrotrophic pathogen Setosphaeria turcica. Furthermore, D. v. virgifera increased shoot levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and primed the induction of chlorogenic acid upon subsequent infestation by S. littoralis. To gain insight into the signalling network behind this below- and aboveground defence interaction, we compiled a set of 32 defence-related genes, which can be used as transcriptional marker systems to detect activities of different hormone-response pathways. Belowground attack by D. v. virgifera triggered an ABA-inducible transcription pattern in the shoot. The quantification of defence hormones showed a local increase in the production of oxylipins after root and shoot infestation by D. v. virgifera and S. littoralis, respectively. On the other hand, ABA accumulated locally and systemically upon belowground attack by D. v. virgifera. Furthermore, D. v. virgifera reduced the aboveground water content, whereas the removal of similar quantities of root biomass had no effect. Our study shows that root herbivory by D. v. virgifera specifically alters the aboveground defence status of a maize, and suggests that ABA plays a role in the signalling network mediating this interaction.
Resumo:
Heating of a pink two-dimensional Co(II) coordination network {[Co2(μ2-OH2)(bdc)2(S-nia)2(H2O)(dmf)]·2(dmf)·(H2O)}n (1) built from 1,4-benzenedicarboxylic acid (H2bdc) residues and thionicotinamide (S-nia) ligands initiates a single-crystal-to-single-crystal transition accompanied by removal of both coordinated and co-crystallized solvents. In the dry blue form, [Co(bdc)(S-nia)]n (dry_1), the Co(II) centers changed from an octahedral to a square pyramidal configuration.
Resumo:
myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol.
Resumo:
We have studied the requirements for efficient histone-specific RNA 3' processing in nuclear extract from mammalian tissue culture cells. Processing is strongly impaired by mutations in the pre-mRNA spacer element that reduce the base-pairing potential with U7 RNA. Moreover, by exchanging the hairpin and spacer elements of two differently processed H4 genes, we find that this difference is exclusively due to the spacer element. Finally, processing is inhibited by the addition of competitor RNAs, if these contain a wild-type spacer sequence, but not if their spacer element is mutated. Conversely, the importance of the hairpin for histone RNA 3' processing is highly variable: A hairpin mutant of the H4-12 gene is processed with almost wild-type efficiency in extract from K21 mouse mastocytoma cells but is strongly affected in HeLa cell extract, whereas an identical hairpin mutant of the H4-1 gene is affected in both extracts. The hairpin defect of H4-12-specific RNA in HeLa cells can be overcome by a compensatory mutation that increases the base complementarity to U7 snRNA. Very similar results were also obtained in RNA competition experiments: processing of H4-12-specific RNA can be competed by RNA carrying a wild-type hairpin element in extract from HeLa, but not K21 cells, whereas processing of H4-1-specific RNA can be competed in both extracts. With two additional histone genes we obtained results that were in one case intermediate and in the other similar to those obtained with H4-1. These results suggest that hairpin binding factor(s) can cooperatively support the ability of U7 snRNPs to form an active processing complex, but is(are) not directly involved in the processing mechanism.
Resumo:
Contagious bovine pleuropneumonia (CBPP) is a serious respiratory disease of cattle caused by Mycoplasma mycoides subsp. mycoides. Current vaccines against CBPP induce short-lived immunity and can cause severe postvaccine reactions. Previous studies have identified the N terminus of the transmembrane lipoprotein Q (LppQ-N') of M. mycoides subsp. mycoides as the major antigen and a possible virulence factor. We therefore immunized cattle with purified recombinant LppQ-N' formulated in Freund's adjuvant and challenged them with M. mycoides subsp. mycoides. Vaccinated animals showed a strong seroconversion to LppQ, but they exhibited significantly enhanced postchallenge glomerulonephritis compared to the placebo group (P = 0.021). Glomerulonephritis was characterized by features that suggested the development of antigen-antibody immune complexes. Clinical signs and gross pathological scores did not significantly differ between vaccinated and placebo groups. These findings reveal for the first time the pathogenesis of enhanced disease as a result of antibodies against LppQ during challenge and also argue against inclusion of LppQ-N' in a future subunit vaccine for CBPP.
Resumo:
AIMS While zebrafish embryos are amenable to in vivo imaging, allowing the study of morphogenetic processes during development, intravital imaging of adults is hampered by their small size and loss of transparency. The use of adult zebrafish as a vertebrate model of cardiac disease and regeneration is increasing at high speed. It is therefore of great importance to establish appropriate and robust methods to measure cardiac function parameters. METHODS AND RESULTS Here we describe the use of 2D-echocardiography to study the fractional volume shortening and segmental wall motion of the ventricle. Our data show that 2D-echocardiography can be used to evaluate cardiac injury and also to study recovery of cardiac function. Interestingly, our results show that while global systolic function recovered following cardiac cryoinjury, ventricular wall motion was only partially restored. CONCLUSION Cryoinjury leads to long-lasting impairment of cardiac contraction, partially mimicking the consequences of myocardial infarction in humans. Functional assessment of heart regeneration by echocardiography allows a deeper understanding of the mechanisms of cardiac regeneration and has the advantage of being easily transferable to other cardiovascular zebrafish disease models.
Resumo:
Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.